kittycad.models.ok_modeling_cmd_response

Classes

OptionCameraDragEnd(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCameraDragMove(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCameraDragStart(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCenterOfMass(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionClosePath(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCurveGetControlPoints(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCurveGetEndPoints(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCurveGetType(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionCurveSetConstraint(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraCenterToScene(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraCenterToSelection(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraFocusOn(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraGetSettings(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraLookAt(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraPerspectiveSettings(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraSetOrthographic(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraSetPerspective(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDefaultCameraZoom(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDensity(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionDisableDryRun(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEdgeLinesVisible(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEmpty(**data)

An empty response, used for any command that does not explicitly have a response defined here.

OptionEnableDryRun(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEnableSketchMode(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEngineUtilEvaluatePath(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityCircularPattern(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityFade(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetAllChildUuids(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetChildUuid(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetDistance(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetNumChildren(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetParentId(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityGetSketchPaths(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityLinearPattern(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityLinearPatternTransform(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityMakeHelix(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityMirror(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntityMirrorAcrossEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionEntitySetOpacity(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionExport(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionExtendPath(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionExtrude(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionExtrusionFaceInfo(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionFaceGetCenter(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionFaceGetGradient(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionFaceGetPosition(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionFaceIsPlanar(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionGetEntityType(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionGetNumObjects(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionGetSketchModePlane(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionHandleMouseDragEnd(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionHandleMouseDragMove(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionHandleMouseDragStart(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionHighlightSetEntities(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionHighlightSetEntity(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionImportFiles(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionImportedGeometry(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionLoft(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMakeAxesGizmo(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMakeOffsetPath(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMakePlane(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMass(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMouseClick(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMouseMove(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionMovePathPen(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionNewAnnotation(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionObjectBringToFront(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionObjectSetMaterialParamsPbr(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionObjectVisible(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathGetCurveUuid(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathGetCurveUuidsForVertices(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathGetInfo(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathGetSketchTargetUuid(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathGetVertexUuids(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPathSegmentInfo(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPlaneIntersectAndProject(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionPlaneSetColor(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionReconfigureStream(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionRemoveSceneObjects(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionRevolve(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionRevolveAboutEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSceneClearAll(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectAdd(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectClear(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectGet(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectRemove(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectReplace(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSelectWithPoint(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSendObject(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetBackgroundColor(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetCurrentToolProperties(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetDefaultSystemProperties(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetSceneUnits(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetSelectionFilter(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetSelectionType(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSetTool(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSketchModeDisable(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid2DAddHole(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DFilletEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetAllEdgeFaces(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetAllOppositeEdges(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetCommonEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetExtrusionFaceInfo(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetNextAdjacentEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetOppositeEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DGetPrevAdjacentEdge(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSolid3DShellFace(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionStartPath(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSurfaceArea(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionSweep(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionTakeSnapshot(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionUpdateAnnotation(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionViewIsometric(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionVolume(**data)

Create a new model by parsing and validating input data from keyword arguments.

OptionZoomToFit(**data)

Create a new model by parsing and validating input data from keyword arguments.

class kittycad.models.ok_modeling_cmd_response.OptionCameraDragEnd(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.camera_drag_end.CameraDragEnd'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['camera_drag_end']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragEnd'>, 'config': {'title': 'OptionCameraDragEnd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragEnd'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragEnd:94028703370656', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_drag_end.CameraDragEnd'>, 'config': {'title': 'CameraDragEnd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_drag_end.CameraDragEnd'>>]}, 'ref': 'kittycad.models.camera_drag_end.CameraDragEnd:94028695188272', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94028695156576', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94028695166192', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'CameraDragEnd', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'camera_drag_end', 'schema': {'expected': ['camera_drag_end'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCameraDragEnd', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragEnd, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_end'], required=False, default='camera_drag_end')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3768da0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2f9b330,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007fe0c0a202f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x00005584c2f93760,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b5b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x00005584c2f95cf0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1420150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a970,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b530,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a7f0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bfbf1470,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CameraDragEnd",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdffe3b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "camera_drag_end",                                             },                                             expected_py: None,                                             name: "literal['camera_drag_end']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCameraDragEnd",     }, ), definitions=[Model(ModelSerializer { class: Py(0x5584c218d2f0), serializer: Fields(GeneralFieldsSerializer { fields: {"x": SerField { key_py: Py(0x7fe0c1c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7fe0c1c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7fe0c1c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCameraDragEnd", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5da10,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5da40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007fe0bcc8c0f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007fe0bcc8c130,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c0a202f0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d830,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007fe0bcc5d860,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1420150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d890,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007fe0bcc5d8c0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a7f0,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007fe0bcc83fb0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007fe0bcc8c030,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b5b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x00005584c2f95cf0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d8f0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007fe0bcc5d920,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a970,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007fe0bcc8c0b0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007fe0bcc8c070,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b530,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d950,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007fe0bcc5d980,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d9b0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007fe0bcc5d9e0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bfbf1470,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x00005584c2f93760,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CameraDragEnd",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2f9b330,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "CameraDragEnd",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5da70,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5daa0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdffe3b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "camera_drag_end": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc8c180,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdffe3b0,                                                 ),                                             ],                                         },                                         expected_repr: "'camera_drag_end'",                                         name: "literal['camera_drag_end']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['camera_drag_end']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCameraDragEnd",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3768da0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionCameraDragEnd",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fe0c1c24420), path: LookupPath([S("x", Py(0x7fe0c1c24420))]) }, name_py: Py(0x7fe0c1c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fe0c1c24450), path: LookupPath([S("y", Py(0x7fe0c1c24450))]) }, name_py: Py(0x7fe0c1c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fe0c1c24480), path: LookupPath([S("z", Py(0x7fe0c1c24480))]) }, name_py: Py(0x7fe0c1c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x5584c218d2f0), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fe0bfae63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.camera_drag_end.CameraDragEnd, type: Literal['camera_drag_end'] = 'camera_drag_end') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CameraDragEnd[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragEnd, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_end'], required=False, default='camera_drag_end')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['camera_drag_end'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCameraDragMove(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.camera_drag_move.CameraDragMove'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['camera_drag_move']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragMove'>, 'config': {'title': 'OptionCameraDragMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragMove'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragMove:94028703333744', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_drag_move.CameraDragMove'>, 'config': {'title': 'CameraDragMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_drag_move.CameraDragMove'>>]}, 'ref': 'kittycad.models.camera_drag_move.CameraDragMove:94028695223696', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94028695156576', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94028695166192', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'CameraDragMove', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'camera_drag_move', 'schema': {'expected': ['camera_drag_move'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCameraDragMove', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragMove, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_move'], required=False, default='camera_drag_move')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c375fd70,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2fa3d90,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007fe0c0a202f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x00005584c2f93760,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1420150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b5b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x00005584c2f95cf0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bfbf1470,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a7f0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b530,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a970,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CameraDragMove",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdffdf70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "camera_drag_move",                                             },                                             expected_py: None,                                             name: "literal['camera_drag_move']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCameraDragMove",     }, ), definitions=[Model(ModelSerializer { class: Py(0x5584c218d2f0), serializer: Fields(GeneralFieldsSerializer { fields: {"x": SerField { key_py: Py(0x7fe0c1c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7fe0c1c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7fe0c1c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCameraDragMove", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5c2a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5c1e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007fe0bcc81770,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007fe0bcc817b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c0a202f0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5cf60,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007fe0bcc5cf30,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1420150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5c630,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007fe0bcc5c210,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a7f0,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007fe0bcc816b0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007fe0bcc81670,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b5b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x00005584c2f95cf0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5c300,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007fe0bcc5c0f0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a970,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007fe0bcc81730,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007fe0bcc816f0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b530,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5c2d0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007fe0bcc5c330,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5c120,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007fe0bcc5ca20,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bfbf1470,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x00005584c2f93760,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CameraDragMove",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2fa3d90,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "CameraDragMove",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5c240,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5c9f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdffdf70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "camera_drag_move": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc81800,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdffdf70,                                                 ),                                             ],                                         },                                         expected_repr: "'camera_drag_move'",                                         name: "literal['camera_drag_move']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['camera_drag_move']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCameraDragMove",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c375fd70,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionCameraDragMove",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fe0c1c24420), path: LookupPath([S("x", Py(0x7fe0c1c24420))]) }, name_py: Py(0x7fe0c1c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fe0c1c24450), path: LookupPath([S("y", Py(0x7fe0c1c24450))]) }, name_py: Py(0x7fe0c1c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fe0c1c24480), path: LookupPath([S("z", Py(0x7fe0c1c24480))]) }, name_py: Py(0x7fe0c1c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x5584c218d2f0), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fe0bfae63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.camera_drag_move.CameraDragMove, type: Literal['camera_drag_move'] = 'camera_drag_move') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CameraDragMove[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragMove, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_move'], required=False, default='camera_drag_move')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['camera_drag_move'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCameraDragStart(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.camera_drag_start.CameraDragStart'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['camera_drag_start']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragStart'>, 'config': {'title': 'OptionCameraDragStart'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragStart'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCameraDragStart:94028702362480', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_drag_start.CameraDragStart'>, 'config': {'title': 'CameraDragStart'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_drag_start.CameraDragStart'>>]}, 'ref': 'kittycad.models.camera_drag_start.CameraDragStart:94028681806800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'CameraDragStart', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'camera_drag_start', 'schema': {'expected': ['camera_drag_start'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCameraDragStart', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragStart, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_start'], required=False, default='camera_drag_start')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3672b70,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdffda70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "camera_drag_start",                                             },                                             expected_py: None,                                             name: "literal['camera_drag_start']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c22d83d0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CameraDragStart",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCameraDragStart",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCameraDragStart", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc44e10,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44e40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "CameraDragStart",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c22d83d0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "CameraDragStart",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc44e70,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc44ea0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdffda70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "camera_drag_start": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde2140,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdffda70,                                                 ),                                             ],                                         },                                         expected_repr: "'camera_drag_start'",                                         name: "literal['camera_drag_start']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['camera_drag_start']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCameraDragStart",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3672b70,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionCameraDragStart",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.camera_drag_start.CameraDragStart, type: Literal['camera_drag_start'] = 'camera_drag_start') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CameraDragStart[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CameraDragStart, required=True), 'type': FieldInfo(annotation=Literal['camera_drag_start'], required=False, default='camera_drag_start')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['camera_drag_start'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCenterOfMass(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.center_of_mass.CenterOfMass'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['center_of_mass']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCenterOfMass'>, 'config': {'title': 'OptionCenterOfMass'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCenterOfMass'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCenterOfMass:94028704025136', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.center_of_mass.CenterOfMass'>, 'config': {'title': 'CenterOfMass'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.center_of_mass.CenterOfMass'>>]}, 'ref': 'kittycad.models.center_of_mass.CenterOfMass:94028681862624', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center_of_mass': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'output_unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitLength'>, 'members': [UnitLength.CM, UnitLength.FT, UnitLength.IN, UnitLength.M, UnitLength.MM, UnitLength.YD], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_length.UnitLength:94028692659824', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}}, 'model_name': 'CenterOfMass', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'center_of_mass', 'schema': {'expected': ['center_of_mass'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCenterOfMass', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CenterOfMass, required=True), 'type': FieldInfo(annotation=Literal['center_of_mass'], required=False, default='center_of_mass')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3808a30,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c22e5de0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "center_of_mass": SerField {                                                     key_py: Py(                                                         0x00007fe0bdeeba30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x00005584c218d2f0,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "y": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24450,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "z": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24480,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "x": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24420,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 3,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "Point3d",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "output_unit": SerField {                                                     key_py: Py(                                                         0x00007fe0bd597f70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x00005584c2d31e70,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CenterOfMass",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdeeba30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "center_of_mass",                                             },                                             expected_py: None,                                             name: "literal['center_of_mass']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCenterOfMass",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCenterOfMass", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5e4f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5dcb0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "center_of_mass",                                                 lookup_key: Simple {                                                     key: "center_of_mass",                                                     py_key: Py(                                                         0x00007fe0bccda270,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "center_of_mass",                                                                 Py(                                                                     0x00007fe0bccdbcb0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bdeeba30,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "x",                                                                         lookup_key: Simple {                                                                             key: "x",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24420,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "x",                                                                                         Py(                                                                                             0x00007fe0c1c24420,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24420,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "y",                                                                         lookup_key: Simple {                                                                             key: "y",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24450,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "y",                                                                                         Py(                                                                                             0x00007fe0c1c24450,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24450,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "z",                                                                         lookup_key: Simple {                                                                             key: "z",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24480,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "z",                                                                                         Py(                                                                                             0x00007fe0c1c24480,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24480,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "Point3d",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x00005584c218d2f0,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                         name: "Point3d",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "output_unit",                                                 lookup_key: Simple {                                                     key: "output_unit",                                                     py_key: Py(                                                         0x00007fe0bccd9730,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "output_unit",                                                                 Py(                                                                     0x00007fe0bcce3970,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd597f70,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x00005584c2d31e70,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "yd": 5,                                                                     "cm": 0,                                                                     "in": 2,                                                                     "m": 3,                                                                     "mm": 4,                                                                     "ft": 1,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007fe0bcce1740,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007fe0bd5131d0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd513770,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd513830,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd513890,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd5138f0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd513950,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'cm', 'ft', 'in', 'm', 'mm' or 'yd'",                                                         strict: false,                                                         class_repr: "UnitLength",                                                         name: "str-enum[UnitLength]",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CenterOfMass",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c22e5de0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "CenterOfMass",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5eca0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5e520,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdeeba30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "center_of_mass": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcccbec0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdeeba30,                                                 ),                                             ],                                         },                                         expected_repr: "'center_of_mass'",                                         name: "literal['center_of_mass']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['center_of_mass']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCenterOfMass",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3808a30,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionCenterOfMass",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.center_of_mass.CenterOfMass, type: Literal['center_of_mass'] = 'center_of_mass') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CenterOfMass[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CenterOfMass, required=True), 'type': FieldInfo(annotation=Literal['center_of_mass'], required=False, default='center_of_mass')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['center_of_mass'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionClosePath(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.close_path.ClosePath'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['close_path']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionClosePath'>, 'config': {'title': 'OptionClosePath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionClosePath'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionClosePath:94028703322496', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.close_path.ClosePath'>, 'config': {'title': 'ClosePath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.close_path.ClosePath'>>]}, 'ref': 'kittycad.models.close_path.ClosePath:94028681891392', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'face_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'ClosePath', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'close_path', 'schema': {'expected': ['close_path'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionClosePath', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ClosePath, required=True), 'type': FieldInfo(annotation=Literal['close_path'], required=False, default='close_path')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c375d180,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdee9d70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "close_path",                                             },                                             expected_py: None,                                             name: "literal['close_path']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c22ece40,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "face_id": SerField {                                                     key_py: Py(                                                         0x00007fe0bdd3ac40,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ClosePath",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionClosePath",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionClosePath", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5d4d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5d320,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "face_id",                                                 lookup_key: Simple {                                                     key: "face_id",                                                     py_key: Py(                                                         0x00007fe0bcc5d3e0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "face_id",                                                                 Py(                                                                     0x00007fe0bcc5d410,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bdd3ac40,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ClosePath",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c22ece40,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "ClosePath",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5d3b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5d380,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdee9d70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "close_path": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc78900,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdee9d70,                                                 ),                                             ],                                         },                                         expected_repr: "'close_path'",                                         name: "literal['close_path']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['close_path']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionClosePath",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c375d180,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionClosePath",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.close_path.ClosePath, type: Literal['close_path'] = 'close_path') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ClosePath[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ClosePath, required=True), 'type': FieldInfo(annotation=Literal['close_path'], required=False, default='close_path')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['close_path'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCurveGetControlPoints(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.curve_get_control_points.CurveGetControlPoints'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['curve_get_control_points']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetControlPoints'>, 'config': {'title': 'OptionCurveGetControlPoints'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetControlPoints'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetControlPoints:94028703688688', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.curve_get_control_points.CurveGetControlPoints'>, 'config': {'title': 'CurveGetControlPoints'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.curve_get_control_points.CurveGetControlPoints'>>]}, 'ref': 'kittycad.models.curve_get_control_points.CurveGetControlPoints:94028682309856', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'control_points': {'metadata': {}, 'schema': {'items_schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'CurveGetControlPoints', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'curve_get_control_points', 'schema': {'expected': ['curve_get_control_points'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCurveGetControlPoints', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetControlPoints, required=True), 'type': FieldInfo(annotation=Literal['curve_get_control_points'], required=False, default='curve_get_control_points')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37b67f0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde095c0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "curve_get_control_points",                                             },                                             expected_py: None,                                             name: "literal['curve_get_control_points']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c23530e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "control_points": SerField {                                                     key_py: Py(                                                         0x00007fe0bd3a77b0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Model(                                                                     ModelSerializer {                                                                         class: Py(                                                                             0x00005584c218d2f0,                                                                         ),                                                                         serializer: Fields(                                                                             GeneralFieldsSerializer {                                                                                 fields: {                                                                                     "x": SerField {                                                                                         key_py: Py(                                                                                             0x00007fe0c1c24420,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Float(                                                                                                 FloatSerializer {                                                                                                     inf_nan_mode: Null,                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "y": SerField {                                                                                         key_py: Py(                                                                                             0x00007fe0c1c24450,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Float(                                                                                                 FloatSerializer {                                                                                                     inf_nan_mode: Null,                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "z": SerField {                                                                                         key_py: Py(                                                                                             0x00007fe0c1c24480,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Float(                                                                                                 FloatSerializer {                                                                                                     inf_nan_mode: Null,                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                 },                                                                                 computed_fields: Some(                                                                                     ComputedFields(                                                                                         [],                                                                                     ),                                                                                 ),                                                                                 mode: SimpleDict,                                                                                 extra_serializer: None,                                                                                 filter: SchemaFilter {                                                                                     include: None,                                                                                     exclude: None,                                                                                 },                                                                                 required_fields: 3,                                                                             },                                                                         ),                                                                         has_extra: false,                                                                         root_model: false,                                                                         name: "Point3d",                                                                     },                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[Point3d]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CurveGetControlPoints",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCurveGetControlPoints",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCurveGetControlPoints", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5e460,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5e4c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "control_points",                                                 lookup_key: Simple {                                                     key: "control_points",                                                     py_key: Py(                                                         0x00007fe0bccb2bf0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "control_points",                                                                 Py(                                                                     0x00007fe0bccb2bb0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd3a77b0,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Model(                                                                 ModelValidator {                                                                     revalidate: Never,                                                                     validator: ModelFields(                                                                         ModelFieldsValidator {                                                                             fields: [                                                                                 Field {                                                                                     name: "x",                                                                                     lookup_key: Simple {                                                                                         key: "x",                                                                                         py_key: Py(                                                                                             0x00007fe0c1c24420,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "x",                                                                                                     Py(                                                                                                         0x00007fe0c1c24420,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007fe0c1c24420,                                                                                     ),                                                                                     validator: Float(                                                                                         FloatValidator {                                                                                             strict: false,                                                                                             allow_inf_nan: true,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "y",                                                                                     lookup_key: Simple {                                                                                         key: "y",                                                                                         py_key: Py(                                                                                             0x00007fe0c1c24450,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "y",                                                                                                     Py(                                                                                                         0x00007fe0c1c24450,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007fe0c1c24450,                                                                                     ),                                                                                     validator: Float(                                                                                         FloatValidator {                                                                                             strict: false,                                                                                             allow_inf_nan: true,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "z",                                                                                     lookup_key: Simple {                                                                                         key: "z",                                                                                         py_key: Py(                                                                                             0x00007fe0c1c24480,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "z",                                                                                                     Py(                                                                                                         0x00007fe0c1c24480,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007fe0c1c24480,                                                                                     ),                                                                                     validator: Float(                                                                                         FloatValidator {                                                                                             strict: false,                                                                                             allow_inf_nan: true,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                             ],                                                                             model_name: "Point3d",                                                                             extra_behavior: Ignore,                                                                             extras_validator: None,                                                                             strict: false,                                                                             from_attributes: false,                                                                             loc_by_alias: true,                                                                         },                                                                     ),                                                                     class: Py(                                                                         0x00005584c218d2f0,                                                                     ),                                                                     generic_origin: None,                                                                     post_init: None,                                                                     frozen: false,                                                                     custom_init: false,                                                                     root_model: false,                                                                     undefined: Py(                                                                         0x00007fe0bfae63d0,                                                                     ),                                                                     name: "Point3d",                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CurveGetControlPoints",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c23530e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "CurveGetControlPoints",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5e490,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5d080,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde095c0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "curve_get_control_points": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccb2c40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde095c0,                                                 ),                                             ],                                         },                                         expected_repr: "'curve_get_control_points'",                                         name: "literal['curve_get_control_points']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['curve_get_control_points']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCurveGetControlPoints",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37b67f0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionCurveGetControlPoints",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.curve_get_control_points.CurveGetControlPoints, type: Literal['curve_get_control_points'] = 'curve_get_control_points') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CurveGetControlPoints[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetControlPoints, required=True), 'type': FieldInfo(annotation=Literal['curve_get_control_points'], required=False, default='curve_get_control_points')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['curve_get_control_points'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCurveGetEndPoints(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.curve_get_end_points.CurveGetEndPoints'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['curve_get_end_points']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetEndPoints'>, 'config': {'title': 'OptionCurveGetEndPoints'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetEndPoints'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetEndPoints:94028703831712', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.curve_get_end_points.CurveGetEndPoints'>, 'config': {'title': 'CurveGetEndPoints'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.curve_get_end_points.CurveGetEndPoints'>>]}, 'ref': 'kittycad.models.curve_get_end_points.CurveGetEndPoints:94028682330496', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'end': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'start': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CurveGetEndPoints', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'curve_get_end_points', 'schema': {'expected': ['curve_get_end_points'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCurveGetEndPoints', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetEndPoints, required=True), 'type': FieldInfo(annotation=Literal['curve_get_end_points'], required=False, default='curve_get_end_points')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37d96a0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be466ff0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "curve_get_end_points",                                             },                                             expected_py: None,                                             name: "literal['curve_get_end_points']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2358180,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "start": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c21fc8,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "end": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c1e648,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CurveGetEndPoints",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCurveGetEndPoints",     }, ), definitions=[Model(ModelSerializer { class: Py(0x5584c218d2f0), serializer: Fields(GeneralFieldsSerializer { fields: {"y": SerField { key_py: Py(0x7fe0c1c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7fe0c1c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7fe0c1c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCurveGetEndPoints", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5ed60,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5e9a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "end",                                                 lookup_key: Simple {                                                     key: "end",                                                     py_key: Py(                                                         0x00007fe0bcc5f0f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "end",                                                                 Py(                                                                     0x00007fe0bcc5f180,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c1e648,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "start",                                                 lookup_key: Simple {                                                     key: "start",                                                     py_key: Py(                                                         0x00007fe0bcc5ebe0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "start",                                                                 Py(                                                                     0x00007fe0bcc5f150,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c21fc8,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CurveGetEndPoints",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2358180,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "CurveGetEndPoints",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5ec10,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5ed90,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be466ff0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "curve_get_end_points": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc99ac0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be466ff0,                                                 ),                                             ],                                         },                                         expected_repr: "'curve_get_end_points'",                                         name: "literal['curve_get_end_points']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['curve_get_end_points']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCurveGetEndPoints",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37d96a0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionCurveGetEndPoints",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fe0c1c24420), path: LookupPath([S("x", Py(0x7fe0c1c24420))]) }, name_py: Py(0x7fe0c1c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fe0c1c24450), path: LookupPath([S("y", Py(0x7fe0c1c24450))]) }, name_py: Py(0x7fe0c1c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fe0c1c24480), path: LookupPath([S("z", Py(0x7fe0c1c24480))]) }, name_py: Py(0x7fe0c1c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x5584c218d2f0), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fe0bfae63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.curve_get_end_points.CurveGetEndPoints, type: Literal['curve_get_end_points'] = 'curve_get_end_points') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CurveGetEndPoints[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetEndPoints, required=True), 'type': FieldInfo(annotation=Literal['curve_get_end_points'], required=False, default='curve_get_end_points')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['curve_get_end_points'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCurveGetType(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.curve_get_type.CurveGetType'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['curve_get_type']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetType'>, 'config': {'title': 'OptionCurveGetType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetType'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCurveGetType:94028703705888', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.curve_get_type.CurveGetType'>, 'config': {'title': 'CurveGetType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.curve_get_type.CurveGetType'>>]}, 'ref': 'kittycad.models.curve_get_type.CurveGetType:94028682322256', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'curve_type': {'metadata': {}, 'schema': {'cls': <enum 'CurveType'>, 'members': [CurveType.LINE, CurveType.ARC, CurveType.NURBS], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.curve_type.CurveType:94028682326512', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}}, 'model_name': 'CurveGetType', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'curve_get_type', 'schema': {'expected': ['curve_get_type'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCurveGetType', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetType, required=True), 'type': FieldInfo(annotation=Literal['curve_get_type'], required=False, default='curve_get_type')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37bab20,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2356150,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "curve_type": SerField {                                                     key_py: Py(                                                         0x00007fe0be465830,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x00005584c23571f0,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CurveGetType",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be4670b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "curve_get_type",                                             },                                             expected_py: None,                                             name: "literal['curve_get_type']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCurveGetType",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCurveGetType", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5de90,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5e370,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "curve_type",                                                 lookup_key: Simple {                                                     key: "curve_type",                                                     py_key: Py(                                                         0x00007fe0bccb3db0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "curve_type",                                                                 Py(                                                                     0x00007fe0bccb3d70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0be465830,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x00005584c23571f0,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "nurbs": 2,                                                                     "line": 0,                                                                     "arc": 1,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007fe0bccb3d00,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007fe0bd2660f0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd266150,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd2661b0,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'line', 'arc' or 'nurbs'",                                                         strict: false,                                                         class_repr: "CurveType",                                                         name: "str-enum[CurveType]",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "CurveGetType",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2356150,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "CurveGetType",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5de00,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5f6c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be4670b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "curve_get_type": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccb3e00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be4670b0,                                                 ),                                             ],                                         },                                         expected_repr: "'curve_get_type'",                                         name: "literal['curve_get_type']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['curve_get_type']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCurveGetType",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37bab20,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionCurveGetType",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.curve_get_type.CurveGetType, type: Literal['curve_get_type'] = 'curve_get_type') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CurveGetType[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveGetType, required=True), 'type': FieldInfo(annotation=Literal['curve_get_type'], required=False, default='curve_get_type')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['curve_get_type'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionCurveSetConstraint(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.curve_set_constraint.CurveSetConstraint'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['curve_set_constraint']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveSetConstraint'>, 'config': {'title': 'OptionCurveSetConstraint'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionCurveSetConstraint'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionCurveSetConstraint:94028702944496', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.curve_set_constraint.CurveSetConstraint'>, 'config': {'title': 'CurveSetConstraint'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.curve_set_constraint.CurveSetConstraint'>>]}, 'ref': 'kittycad.models.curve_set_constraint.CurveSetConstraint:94028682352128', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'CurveSetConstraint', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'curve_set_constraint', 'schema': {'expected': ['curve_set_constraint'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionCurveSetConstraint', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveSetConstraint, required=True), 'type': FieldInfo(annotation=Literal['curve_set_constraint'], required=False, default='curve_set_constraint')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3700cf0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be467130,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "curve_set_constraint",                                             },                                             expected_py: None,                                             name: "literal['curve_set_constraint']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c235d600,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "CurveSetConstraint",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionCurveSetConstraint",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionCurveSetConstraint", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1f4b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1f540,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "CurveSetConstraint",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c235d600,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "CurveSetConstraint",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1f510,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1f360,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be467130,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "curve_set_constraint": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc34100,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be467130,                                                 ),                                             ],                                         },                                         expected_repr: "'curve_set_constraint'",                                         name: "literal['curve_set_constraint']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['curve_set_constraint']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionCurveSetConstraint",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3700cf0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionCurveSetConstraint",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.curve_set_constraint.CurveSetConstraint, type: Literal['curve_set_constraint'] = 'curve_set_constraint') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: CurveSetConstraint[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=CurveSetConstraint, required=True), 'type': FieldInfo(annotation=Literal['curve_set_constraint'], required=False, default='curve_set_constraint')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['curve_set_constraint'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToScene(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_center_to_scene.DefaultCameraCenterToScene'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_center_to_scene']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToScene'>, 'config': {'title': 'OptionDefaultCameraCenterToScene'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToScene'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToScene:94028703187344', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_center_to_scene.DefaultCameraCenterToScene'>, 'config': {'title': 'DefaultCameraCenterToScene'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_center_to_scene.DefaultCameraCenterToScene'>>]}, 'ref': 'kittycad.models.default_camera_center_to_scene.DefaultCameraCenterToScene:94028695504400', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraCenterToScene', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_center_to_scene', 'schema': {'expected': ['default_camera_center_to_scene'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraCenterToScene', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraCenterToScene, required=True), 'type': FieldInfo(annotation=Literal['default_camera_center_to_scene'], required=False, default='default_camera_center_to_scene')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c373c190,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde09570,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_center_to_scene",                                             },                                             expected_py: None,                                             name: "literal['default_camera_center_to_scene']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2fe8610,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraCenterToScene",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraCenterToScene",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraCenterToScene", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5c8a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5c8d0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraCenterToScene",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2fe8610,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "DefaultCameraCenterToScene",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5c900,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5c930,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde09570,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_center_to_scene": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc63380,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde09570,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_center_to_scene'",                                         name: "literal['default_camera_center_to_scene']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_center_to_scene']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraCenterToScene",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c373c190,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionDefaultCameraCenterToScene",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_center_to_scene.DefaultCameraCenterToScene, type: Literal['default_camera_center_to_scene'] = 'default_camera_center_to_scene') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraCenterToScene[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraCenterToScene, required=True), 'type': FieldInfo(annotation=Literal['default_camera_center_to_scene'], required=False, default='default_camera_center_to_scene')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_center_to_scene'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToSelection(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_center_to_selection.DefaultCameraCenterToSelection'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_center_to_selection']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToSelection'>, 'config': {'title': 'OptionDefaultCameraCenterToSelection'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToSelection'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraCenterToSelection:94028703177600', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_center_to_selection.DefaultCameraCenterToSelection'>, 'config': {'title': 'DefaultCameraCenterToSelection'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_center_to_selection.DefaultCameraCenterToSelection'>>]}, 'ref': 'kittycad.models.default_camera_center_to_selection.DefaultCameraCenterToSelection:94028695531760', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraCenterToSelection', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_center_to_selection', 'schema': {'expected': ['default_camera_center_to_selection'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraCenterToSelection', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraCenterToSelection, required=True), 'type': FieldInfo(annotation=Literal['default_camera_center_to_selection'], required=False, default='default_camera_center_to_selection')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3739b80,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde09480,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_center_to_selection",                                             },                                             expected_py: None,                                             name: "literal['default_camera_center_to_selection']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2fef0f0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraCenterToSelection",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraCenterToSelection",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraCenterToSelection", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5c4e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5c570,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraCenterToSelection",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2fef0f0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "DefaultCameraCenterToSelection",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5c540,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5c390,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde09480,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_center_to_selection": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc62440,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde09480,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_center_to_selection'",                                         name: "literal['default_camera_center_to_selection']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_center_to_selection']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraCenterToSelection",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3739b80,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionDefaultCameraCenterToSelection",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_center_to_selection.DefaultCameraCenterToSelection, type: Literal['default_camera_center_to_selection'] = 'default_camera_center_to_selection') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraCenterToSelection[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraCenterToSelection, required=True), 'type': FieldInfo(annotation=Literal['default_camera_center_to_selection'], required=False, default='default_camera_center_to_selection')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_center_to_selection'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraFocusOn(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_focus_on.DefaultCameraFocusOn'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_focus_on']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraFocusOn'>, 'config': {'title': 'OptionDefaultCameraFocusOn'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraFocusOn'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraFocusOn:94028703578240', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_focus_on.DefaultCameraFocusOn'>, 'config': {'title': 'DefaultCameraFocusOn'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_focus_on.DefaultCameraFocusOn'>>]}, 'ref': 'kittycad.models.default_camera_focus_on.DefaultCameraFocusOn:94028695508208', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraFocusOn', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_focus_on', 'schema': {'expected': ['default_camera_focus_on'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraFocusOn', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraFocusOn, required=True), 'type': FieldInfo(annotation=Literal['default_camera_focus_on'], required=False, default='default_camera_focus_on')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c379b880,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be4674b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_focus_on",                                             },                                             expected_py: None,                                             name: "literal['default_camera_focus_on']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2fe94f0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraFocusOn",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraFocusOn",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraFocusOn", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5cf90,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5cf00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraFocusOn",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2fe94f0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "DefaultCameraFocusOn",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5e3d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5e400,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be4674b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_focus_on": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc8ed00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be4674b0,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_focus_on'",                                         name: "literal['default_camera_focus_on']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_focus_on']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraFocusOn",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c379b880,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionDefaultCameraFocusOn",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_focus_on.DefaultCameraFocusOn, type: Literal['default_camera_focus_on'] = 'default_camera_focus_on') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraFocusOn[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraFocusOn, required=True), 'type': FieldInfo(annotation=Literal['default_camera_focus_on'], required=False, default='default_camera_focus_on')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_focus_on'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraGetSettings(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_get_settings.DefaultCameraGetSettings'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_get_settings']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraGetSettings'>, 'config': {'title': 'OptionDefaultCameraGetSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraGetSettings'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraGetSettings:94028703407088', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_get_settings.DefaultCameraGetSettings'>, 'config': {'title': 'DefaultCameraGetSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_get_settings.DefaultCameraGetSettings'>>]}, 'ref': 'kittycad.models.default_camera_get_settings.DefaultCameraGetSettings:94028695512192', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94028695156576', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94028695166192', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'DefaultCameraGetSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_get_settings', 'schema': {'expected': ['default_camera_get_settings'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraGetSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraGetSettings, required=True), 'type': FieldInfo(annotation=Literal['default_camera_get_settings'], required=False, default='default_camera_get_settings')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3771bf0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde093e0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_get_settings",                                             },                                             expected_py: None,                                             name: "literal['default_camera_get_settings']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2fea480,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007fe0c0a202f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x00005584c2f93760,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b5b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x00005584c2f95cf0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a7f0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a970,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1420150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b530,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bfbf1470,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraGetSettings",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraGetSettings",     }, ), definitions=[Model(ModelSerializer { class: Py(0x5584c218d2f0), serializer: Fields(GeneralFieldsSerializer { fields: {"y": SerField { key_py: Py(0x7fe0c1c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7fe0c1c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7fe0c1c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraGetSettings", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdacd20,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdace40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007fe0bcc82370,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007fe0bcc821f0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c0a202f0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007fe0bce1f570,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007fe0bce1f5a0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1420150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007fe0bce1f630,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007fe0bce1f2d0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a7f0,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007fe0bd3664f0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007fe0bcc70e70,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b5b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x00005584c2f95cf0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007fe0bce1f330,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007fe0bcdaf360,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a970,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007fe0bcc82630,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007fe0bcc82bf0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b530,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007fe0bcdae910,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007fe0bcdad7d0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007fe0bcdafe10,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007fe0bcdac0f0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bfbf1470,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x00005584c2f93760,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "DefaultCameraGetSettings",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2fea480,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "DefaultCameraGetSettings",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdae070,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdaebb0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde093e0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_get_settings": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc82280,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde093e0,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_get_settings'",                                         name: "literal['default_camera_get_settings']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_get_settings']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraGetSettings",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3771bf0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionDefaultCameraGetSettings",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fe0c1c24420), path: LookupPath([S("x", Py(0x7fe0c1c24420))]) }, name_py: Py(0x7fe0c1c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fe0c1c24450), path: LookupPath([S("y", Py(0x7fe0c1c24450))]) }, name_py: Py(0x7fe0c1c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fe0c1c24480), path: LookupPath([S("z", Py(0x7fe0c1c24480))]) }, name_py: Py(0x7fe0c1c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x5584c218d2f0), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fe0bfae63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_get_settings.DefaultCameraGetSettings, type: Literal['default_camera_get_settings'] = 'default_camera_get_settings') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraGetSettings[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraGetSettings, required=True), 'type': FieldInfo(annotation=Literal['default_camera_get_settings'], required=False, default='default_camera_get_settings')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_get_settings'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraLookAt(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_look_at.DefaultCameraLookAt'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_look_at']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraLookAt'>, 'config': {'title': 'OptionDefaultCameraLookAt'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraLookAt'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraLookAt:94028702371600', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_look_at.DefaultCameraLookAt'>, 'config': {'title': 'DefaultCameraLookAt'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_look_at.DefaultCameraLookAt'>>]}, 'ref': 'kittycad.models.default_camera_look_at.DefaultCameraLookAt:94028695556832', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraLookAt', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_look_at', 'schema': {'expected': ['default_camera_look_at'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraLookAt', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraLookAt, required=True), 'type': FieldInfo(annotation=Literal['default_camera_look_at'], required=False, default='default_camera_look_at')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3674f10,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be467ab0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_look_at",                                             },                                             expected_py: None,                                             name: "literal['default_camera_look_at']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2ff52e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraLookAt",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraLookAt",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraLookAt", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc451d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc45200,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraLookAt",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2ff52e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "DefaultCameraLookAt",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc45230,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc45260,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be467ab0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_look_at": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde1380,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be467ab0,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_look_at'",                                         name: "literal['default_camera_look_at']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_look_at']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraLookAt",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3674f10,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionDefaultCameraLookAt",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_look_at.DefaultCameraLookAt, type: Literal['default_camera_look_at'] = 'default_camera_look_at') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraLookAt[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraLookAt, required=True), 'type': FieldInfo(annotation=Literal['default_camera_look_at'], required=False, default='default_camera_look_at')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_look_at'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraPerspectiveSettings(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_perspective_settings.DefaultCameraPerspectiveSettings'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_perspective_settings']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraPerspectiveSettings'>, 'config': {'title': 'OptionDefaultCameraPerspectiveSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraPerspectiveSettings'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraPerspectiveSettings:94028702381104', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_perspective_settings.DefaultCameraPerspectiveSettings'>, 'config': {'title': 'DefaultCameraPerspectiveSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_perspective_settings.DefaultCameraPerspectiveSettings'>>]}, 'ref': 'kittycad.models.default_camera_perspective_settings.DefaultCameraPerspectiveSettings:94028695562416', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraPerspectiveSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_perspective_settings', 'schema': {'expected': ['default_camera_perspective_settings'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraPerspectiveSettings', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraPerspectiveSettings, required=True), 'type': FieldInfo(annotation=Literal['default_camera_perspective_settings'], required=False, default='default_camera_perspective_settings')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3677430,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde092a0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_perspective_settings",                                             },                                             expected_py: None,                                             name: "literal['default_camera_perspective_settings']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2ff68b0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraPerspectiveSettings",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraPerspectiveSettings",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraPerspectiveSettings", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdaff60,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdade00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraPerspectiveSettings",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2ff68b0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "DefaultCameraPerspectiveSettings",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdaffc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdaf4b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde092a0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_perspective_settings": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde4080,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde092a0,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_perspective_settings'",                                         name: "literal['default_camera_perspective_settings']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_perspective_settings']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraPerspectiveSettings",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3677430,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionDefaultCameraPerspectiveSettings",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_perspective_settings.DefaultCameraPerspectiveSettings, type: Literal['default_camera_perspective_settings'] = 'default_camera_perspective_settings') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraPerspectiveSettings[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraPerspectiveSettings, required=True), 'type': FieldInfo(annotation=Literal['default_camera_perspective_settings'], required=False, default='default_camera_perspective_settings')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_perspective_settings'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetOrthographic(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_set_orthographic.DefaultCameraSetOrthographic'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_set_orthographic']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetOrthographic'>, 'config': {'title': 'OptionDefaultCameraSetOrthographic'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetOrthographic'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetOrthographic:94028703158400', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_set_orthographic.DefaultCameraSetOrthographic'>, 'config': {'title': 'DefaultCameraSetOrthographic'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_set_orthographic.DefaultCameraSetOrthographic'>>]}, 'ref': 'kittycad.models.default_camera_set_orthographic.DefaultCameraSetOrthographic:94028695565360', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraSetOrthographic', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_set_orthographic', 'schema': {'expected': ['default_camera_set_orthographic'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraSetOrthographic', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraSetOrthographic, required=True), 'type': FieldInfo(annotation=Literal['default_camera_set_orthographic'], required=False, default='default_camera_set_orthographic')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3735080,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2ff7430,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraSetOrthographic",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde091b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_set_orthographic",                                             },                                             expected_py: None,                                             name: "literal['default_camera_set_orthographic']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraSetOrthographic",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraSetOrthographic", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdafa20,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdac630,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraSetOrthographic",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2ff7430,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "DefaultCameraSetOrthographic",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdad770,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc45a40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde091b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_set_orthographic": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc60740,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde091b0,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_set_orthographic'",                                         name: "literal['default_camera_set_orthographic']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_set_orthographic']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraSetOrthographic",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3735080,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionDefaultCameraSetOrthographic",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_set_orthographic.DefaultCameraSetOrthographic, type: Literal['default_camera_set_orthographic'] = 'default_camera_set_orthographic') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraSetOrthographic[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraSetOrthographic, required=True), 'type': FieldInfo(annotation=Literal['default_camera_set_orthographic'], required=False, default='default_camera_set_orthographic')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_set_orthographic'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetPerspective(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_set_perspective.DefaultCameraSetPerspective'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_set_perspective']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetPerspective'>, 'config': {'title': 'OptionDefaultCameraSetPerspective'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetPerspective'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraSetPerspective:94028703167856', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_set_perspective.DefaultCameraSetPerspective'>, 'config': {'title': 'DefaultCameraSetPerspective'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_set_perspective.DefaultCameraSetPerspective'>>]}, 'ref': 'kittycad.models.default_camera_set_perspective.DefaultCameraSetPerspective:94028695568816', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DefaultCameraSetPerspective', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_set_perspective', 'schema': {'expected': ['default_camera_set_perspective'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraSetPerspective', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraSetPerspective, required=True), 'type': FieldInfo(annotation=Literal['default_camera_set_perspective'], required=False, default='default_camera_set_perspective')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3737570,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2ff81b0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraSetPerspective",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde09110,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_set_perspective",                                             },                                             expected_py: None,                                             name: "literal['default_camera_set_perspective']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraSetPerspective",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraSetPerspective", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45e00,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc45380,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DefaultCameraSetPerspective",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2ff81b0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "DefaultCameraSetPerspective",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc45e30,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc46010,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde09110,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_set_perspective": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc61540,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde09110,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_set_perspective'",                                         name: "literal['default_camera_set_perspective']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_set_perspective']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraSetPerspective",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3737570,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionDefaultCameraSetPerspective",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_set_perspective.DefaultCameraSetPerspective, type: Literal['default_camera_set_perspective'] = 'default_camera_set_perspective') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraSetPerspective[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraSetPerspective, required=True), 'type': FieldInfo(annotation=Literal['default_camera_set_perspective'], required=False, default='default_camera_set_perspective')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_set_perspective'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraZoom(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.default_camera_zoom.DefaultCameraZoom'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['default_camera_zoom']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraZoom'>, 'config': {'title': 'OptionDefaultCameraZoom'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraZoom'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDefaultCameraZoom:94028703443744', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.default_camera_zoom.DefaultCameraZoom'>, 'config': {'title': 'DefaultCameraZoom'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.default_camera_zoom.DefaultCameraZoom'>>]}, 'ref': 'kittycad.models.default_camera_zoom.DefaultCameraZoom:94028695571360', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94028695156576', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94028695166192', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'DefaultCameraZoom', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'default_camera_zoom', 'schema': {'expected': ['default_camera_zoom'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDefaultCameraZoom', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraZoom, required=True), 'type': FieldInfo(annotation=Literal['default_camera_zoom'], required=False, default='default_camera_zoom')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c377ab20,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c2ff8ba0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007fe0c0a202f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x00005584c2f93760,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a7f0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1420150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b530,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b5b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x00005584c2f95cf0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a970,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bfbf1470,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DefaultCameraZoom",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be3e13f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "default_camera_zoom",                                             },                                             expected_py: None,                                             name: "literal['default_camera_zoom']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDefaultCameraZoom",     }, ), definitions=[Model(ModelSerializer { class: Py(0x5584c218d2f0), serializer: Fields(GeneralFieldsSerializer { fields: {"x": SerField { key_py: Py(0x7fe0c1c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7fe0c1c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7fe0c1c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDefaultCameraZoom", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5c270,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5cb40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007fe0bcc8e5b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007fe0bcc8e5f0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c0a202f0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007fe0bcc45500,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007fe0bcc454d0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1420150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5dc80,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007fe0bcc5d770,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a7f0,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007fe0bcc8e4f0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007fe0bcc8e4b0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b5b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x00005584c2f95cf0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d740,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007fe0bcc5d7d0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a970,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007fe0bcc8e570,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007fe0bcc8e530,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b530,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d7a0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007fe0bcc5d710,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d6e0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007fe0bcc5cb10,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bfbf1470,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x00005584c2f93760,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "DefaultCameraZoom",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c2ff8ba0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "DefaultCameraZoom",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5cc00,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5cba0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be3e13f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "default_camera_zoom": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc8e640,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be3e13f0,                                                 ),                                             ],                                         },                                         expected_repr: "'default_camera_zoom'",                                         name: "literal['default_camera_zoom']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['default_camera_zoom']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDefaultCameraZoom",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c377ab20,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionDefaultCameraZoom",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fe0c1c24420), path: LookupPath([S("x", Py(0x7fe0c1c24420))]) }, name_py: Py(0x7fe0c1c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fe0c1c24450), path: LookupPath([S("y", Py(0x7fe0c1c24450))]) }, name_py: Py(0x7fe0c1c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fe0c1c24480), path: LookupPath([S("z", Py(0x7fe0c1c24480))]) }, name_py: Py(0x7fe0c1c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x5584c218d2f0), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fe0bfae63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.default_camera_zoom.DefaultCameraZoom, type: Literal['default_camera_zoom'] = 'default_camera_zoom') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DefaultCameraZoom[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DefaultCameraZoom, required=True), 'type': FieldInfo(annotation=Literal['default_camera_zoom'], required=False, default='default_camera_zoom')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['default_camera_zoom'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDensity(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.density.Density'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['density']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDensity'>, 'config': {'title': 'OptionDensity'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDensity'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDensity:94028703999104', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.density.Density'>, 'config': {'title': 'Density'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.density.Density'>>]}, 'ref': 'kittycad.models.density.Density:94028695601472', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'density': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'output_unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitDensity'>, 'members': [UnitDensity.LB_FT3, UnitDensity.KG_M3], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_density.UnitDensity:94028691440480', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}}, 'model_name': 'Density', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'density', 'schema': {'expected': ['density'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDensity', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Density, required=True), 'type': FieldInfo(annotation=Literal['density'], required=False, default='density')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3802480,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3000140,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "density": SerField {                                                     key_py: Py(                                                         0x00007fe0bec31350,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "output_unit": SerField {                                                     key_py: Py(                                                         0x00007fe0bd597f70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x00005584c2c08360,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Density",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bec31350,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "density",                                             },                                             expected_py: None,                                             name: "literal['density']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDensity",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDensity", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd16b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd16e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "density",                                                 lookup_key: Simple {                                                     key: "density",                                                     py_key: Py(                                                         0x00007fe0bccd1650,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "density",                                                                 Py(                                                                     0x00007fe0bccd1680,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bec31350,                                                 ),                                                 validator: Float(                                                     FloatValidator {                                                         strict: false,                                                         allow_inf_nan: true,                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "output_unit",                                                 lookup_key: Simple {                                                     key: "output_unit",                                                     py_key: Py(                                                         0x00007fe0bcce9570,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "output_unit",                                                                 Py(                                                                     0x00007fe0bcce9630,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd597f70,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x00005584c2c08360,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "lb:ft3": 0,                                                                     "kg:m3": 1,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007fe0bcce95c0,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007fe0bd4c6390,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c63f0,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'lb:ft3' or 'kg:m3'",                                                         strict: false,                                                         class_repr: "UnitDensity",                                                         name: "str-enum[UnitDensity]",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Density",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3000140,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Density",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd1710,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd1740,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bec31350,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "density": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcce9600,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bec31350,                                                 ),                                             ],                                         },                                         expected_repr: "'density'",                                         name: "literal['density']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['density']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDensity",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3802480,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionDensity",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.density.Density, type: Literal['density'] = 'density') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Density[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Density, required=True), 'type': FieldInfo(annotation=Literal['density'], required=False, default='density')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['density'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionDisableDryRun(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.disable_dry_run.DisableDryRun'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['disable_dry_run']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionDisableDryRun'>, 'config': {'title': 'OptionDisableDryRun'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionDisableDryRun'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionDisableDryRun:94028702935040', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.disable_dry_run.DisableDryRun'>, 'config': {'title': 'DisableDryRun'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.disable_dry_run.DisableDryRun'>>]}, 'ref': 'kittycad.models.disable_dry_run.DisableDryRun:94028695659872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'DisableDryRun', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'disable_dry_run', 'schema': {'expected': ['disable_dry_run'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionDisableDryRun', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DisableDryRun, required=True), 'type': FieldInfo(annotation=Literal['disable_dry_run'], required=False, default='disable_dry_run')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36fe800,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c300e560,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "DisableDryRun",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be3e1bf0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "disable_dry_run",                                             },                                             expected_py: None,                                             name: "literal['disable_dry_run']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionDisableDryRun",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionDisableDryRun", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45410,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc45e60,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "DisableDryRun",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c300e560,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "DisableDryRun",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc46100,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc45da0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be3e1bf0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "disable_dry_run": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc34ec0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be3e1bf0,                                                 ),                                             ],                                         },                                         expected_repr: "'disable_dry_run'",                                         name: "literal['disable_dry_run']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['disable_dry_run']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionDisableDryRun",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36fe800,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionDisableDryRun",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.disable_dry_run.DisableDryRun, type: Literal['disable_dry_run'] = 'disable_dry_run') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: DisableDryRun[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=DisableDryRun, required=True), 'type': FieldInfo(annotation=Literal['disable_dry_run'], required=False, default='disable_dry_run')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['disable_dry_run'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEdgeLinesVisible(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.edge_lines_visible.EdgeLinesVisible'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['edge_lines_visible']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEdgeLinesVisible'>, 'config': {'title': 'OptionEdgeLinesVisible'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEdgeLinesVisible'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEdgeLinesVisible:94028702795632', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.edge_lines_visible.EdgeLinesVisible'>, 'config': {'title': 'EdgeLinesVisible'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.edge_lines_visible.EdgeLinesVisible'>>]}, 'ref': 'kittycad.models.edge_lines_visible.EdgeLinesVisible:94028695726112', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EdgeLinesVisible', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'edge_lines_visible', 'schema': {'expected': ['edge_lines_visible'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEdgeLinesVisible', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EdgeLinesVisible, required=True), 'type': FieldInfo(annotation=Literal['edge_lines_visible'], required=False, default='edge_lines_visible')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36dc770,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be3e1bb0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "edge_lines_visible",                                             },                                             expected_py: None,                                             name: "literal['edge_lines_visible']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c301e820,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EdgeLinesVisible",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEdgeLinesVisible",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEdgeLinesVisible", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc440f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44780,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EdgeLinesVisible",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c301e820,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EdgeLinesVisible",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc44600,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc44060,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be3e1bb0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "edge_lines_visible": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdca000,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be3e1bb0,                                                 ),                                             ],                                         },                                         expected_repr: "'edge_lines_visible'",                                         name: "literal['edge_lines_visible']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['edge_lines_visible']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEdgeLinesVisible",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36dc770,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEdgeLinesVisible",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.edge_lines_visible.EdgeLinesVisible, type: Literal['edge_lines_visible'] = 'edge_lines_visible') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EdgeLinesVisible[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EdgeLinesVisible, required=True), 'type': FieldInfo(annotation=Literal['edge_lines_visible'], required=False, default='edge_lines_visible')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['edge_lines_visible'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEmpty(**data)[source][source]

An empty response, used for any command that does not explicitly have a response defined here.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['empty']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEmpty'>, 'config': {'title': 'OptionEmpty'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEmpty'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEmpty:94028698297440', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'type': {'metadata': {}, 'schema': {'default': 'empty', 'schema': {'expected': ['empty'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEmpty', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'type': FieldInfo(annotation=Literal['empty'], required=False, default='empty')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3292460,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0c1b8f160,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "empty",                                             },                                             expected_py: None,                                             name: "literal['empty']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 1,             },         ),         has_extra: false,         root_model: false,         name: "OptionEmpty",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEmpty", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdadef0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdadce0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0c1b8f160,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "empty": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc42f00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0c1b8f160,                                                 ),                                             ],                                         },                                         expected_repr: "'empty'",                                         name: "literal['empty']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['empty']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEmpty",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3292460,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEmpty",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, type: Literal['empty'] = 'empty') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'type': FieldInfo(annotation=Literal['empty'], required=False, default='empty')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['empty'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEnableDryRun(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.enable_dry_run.EnableDryRun'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['enable_dry_run']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEnableDryRun'>, 'config': {'title': 'OptionEnableDryRun'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEnableDryRun'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEnableDryRun:94028702925840', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.enable_dry_run.EnableDryRun'>, 'config': {'title': 'EnableDryRun'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.enable_dry_run.EnableDryRun'>>]}, 'ref': 'kittycad.models.enable_dry_run.EnableDryRun:94028695738400', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EnableDryRun', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'enable_dry_run', 'schema': {'expected': ['enable_dry_run'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEnableDryRun', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EnableDryRun, required=True), 'type': FieldInfo(annotation=Literal['enable_dry_run'], required=False, default='enable_dry_run')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36fc410,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3021820,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EnableDryRun",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be3e1f70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "enable_dry_run",                                             },                                             expected_py: None,                                             name: "literal['enable_dry_run']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEnableDryRun",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEnableDryRun", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc456b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44840,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EnableDryRun",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3021820,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EnableDryRun",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc440c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc449f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be3e1f70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "enable_dry_run": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdcb4c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be3e1f70,                                                 ),                                             ],                                         },                                         expected_repr: "'enable_dry_run'",                                         name: "literal['enable_dry_run']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['enable_dry_run']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEnableDryRun",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36fc410,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEnableDryRun",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.enable_dry_run.EnableDryRun, type: Literal['enable_dry_run'] = 'enable_dry_run') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EnableDryRun[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EnableDryRun, required=True), 'type': FieldInfo(annotation=Literal['enable_dry_run'], required=False, default='enable_dry_run')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['enable_dry_run'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEnableSketchMode(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.enable_sketch_mode.EnableSketchMode'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['enable_sketch_mode']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEnableSketchMode'>, 'config': {'title': 'OptionEnableSketchMode'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEnableSketchMode'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEnableSketchMode:94028702953632', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.enable_sketch_mode.EnableSketchMode'>, 'config': {'title': 'EnableSketchMode'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.enable_sketch_mode.EnableSketchMode'>>]}, 'ref': 'kittycad.models.enable_sketch_mode.EnableSketchMode:94028695744912', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EnableSketchMode', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'enable_sketch_mode', 'schema': {'expected': ['enable_sketch_mode'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEnableSketchMode', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EnableSketchMode, required=True), 'type': FieldInfo(annotation=Literal['enable_sketch_mode'], required=False, default='enable_sketch_mode')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37030a0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdf0ff70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "enable_sketch_mode",                                             },                                             expected_py: None,                                             name: "literal['enable_sketch_mode']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3023190,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EnableSketchMode",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEnableSketchMode",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEnableSketchMode", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1ef40,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1d440,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EnableSketchMode",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3023190,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EnableSketchMode",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1ea60,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1ecd0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdf0ff70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "enable_sketch_mode": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc4cd80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdf0ff70,                                                 ),                                             ],                                         },                                         expected_repr: "'enable_sketch_mode'",                                         name: "literal['enable_sketch_mode']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['enable_sketch_mode']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEnableSketchMode",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37030a0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEnableSketchMode",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.enable_sketch_mode.EnableSketchMode, type: Literal['enable_sketch_mode'] = 'enable_sketch_mode') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EnableSketchMode[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EnableSketchMode, required=True), 'type': FieldInfo(annotation=Literal['enable_sketch_mode'], required=False, default='enable_sketch_mode')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['enable_sketch_mode'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEngineUtilEvaluatePath(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.engine_util_evaluate_path.EngineUtilEvaluatePath'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['engine_util_evaluate_path']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEngineUtilEvaluatePath'>, 'config': {'title': 'OptionEngineUtilEvaluatePath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEngineUtilEvaluatePath'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEngineUtilEvaluatePath:94028702647808', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.engine_util_evaluate_path.EngineUtilEvaluatePath'>, 'config': {'title': 'EngineUtilEvaluatePath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.engine_util_evaluate_path.EngineUtilEvaluatePath'>>]}, 'ref': 'kittycad.models.engine_util_evaluate_path.EngineUtilEvaluatePath:94028695774464', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'pos': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'EngineUtilEvaluatePath', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'engine_util_evaluate_path', 'schema': {'expected': ['engine_util_evaluate_path'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEngineUtilEvaluatePath', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EngineUtilEvaluatePath, required=True), 'type': FieldInfo(annotation=Literal['engine_util_evaluate_path'], required=False, default='engine_util_evaluate_path')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36b8600,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde08e40,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "engine_util_evaluate_path",                                             },                                             expected_py: None,                                             name: "literal['engine_util_evaluate_path']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c302a500,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "pos": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c210d8,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x00005584c218d2f0,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "z": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24480,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "x": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24420,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "y": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24450,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 3,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "Point3d",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EngineUtilEvaluatePath",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEngineUtilEvaluatePath",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEngineUtilEvaluatePath", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdaeaf0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdafa80,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "pos",                                                 lookup_key: Simple {                                                     key: "pos",                                                     py_key: Py(                                                         0x00007fe0bcdae7c0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "pos",                                                                 Py(                                                                     0x00007fe0bcdae730,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c210d8,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "x",                                                                         lookup_key: Simple {                                                                             key: "x",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24420,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "x",                                                                                         Py(                                                                                             0x00007fe0c1c24420,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24420,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "y",                                                                         lookup_key: Simple {                                                                             key: "y",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24450,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "y",                                                                                         Py(                                                                                             0x00007fe0c1c24450,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24450,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "z",                                                                         lookup_key: Simple {                                                                             key: "z",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24480,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "z",                                                                                         Py(                                                                                             0x00007fe0c1c24480,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24480,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "Point3d",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x00005584c218d2f0,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                         name: "Point3d",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EngineUtilEvaluatePath",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c302a500,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EngineUtilEvaluatePath",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdafba0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdafab0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde08e40,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "engine_util_evaluate_path": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde7b40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde08e40,                                                 ),                                             ],                                         },                                         expected_repr: "'engine_util_evaluate_path'",                                         name: "literal['engine_util_evaluate_path']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['engine_util_evaluate_path']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEngineUtilEvaluatePath",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36b8600,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEngineUtilEvaluatePath",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.engine_util_evaluate_path.EngineUtilEvaluatePath, type: Literal['engine_util_evaluate_path'] = 'engine_util_evaluate_path') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EngineUtilEvaluatePath[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EngineUtilEvaluatePath, required=True), 'type': FieldInfo(annotation=Literal['engine_util_evaluate_path'], required=False, default='engine_util_evaluate_path')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['engine_util_evaluate_path'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityCircularPattern(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_circular_pattern.EntityCircularPattern'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_circular_pattern']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityCircularPattern'>, 'config': {'title': 'OptionEntityCircularPattern'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityCircularPattern'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityCircularPattern:94028704103392', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_circular_pattern.EntityCircularPattern'>, 'config': {'title': 'EntityCircularPattern'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_circular_pattern.EntityCircularPattern'>>]}, 'ref': 'kittycad.models.entity_circular_pattern.EntityCircularPattern:94028695799792', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'EntityCircularPattern', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_circular_pattern', 'schema': {'expected': ['entity_circular_pattern'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityCircularPattern', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityCircularPattern, required=True), 'type': FieldInfo(annotation=Literal['entity_circular_pattern'], required=False, default='entity_circular_pattern')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c381bbe0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdda1ab0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_circular_pattern",                                             },                                             expected_py: None,                                             name: "literal['entity_circular_pattern']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c30307f0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007fe0bd34de30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityCircularPattern",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityCircularPattern",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityCircularPattern", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd20d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd2100,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007fe0bccf7cf0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007fe0bccf7cb0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd34de30,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityCircularPattern",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c30307f0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityCircularPattern",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd2130,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd2160,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdda1ab0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_circular_pattern": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccf7d40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdda1ab0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_circular_pattern'",                                         name: "literal['entity_circular_pattern']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_circular_pattern']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityCircularPattern",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c381bbe0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityCircularPattern",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_circular_pattern.EntityCircularPattern, type: Literal['entity_circular_pattern'] = 'entity_circular_pattern') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityCircularPattern[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityCircularPattern, required=True), 'type': FieldInfo(annotation=Literal['entity_circular_pattern'], required=False, default='entity_circular_pattern')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_circular_pattern'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityFade(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_fade.EntityFade'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_fade']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityFade'>, 'config': {'title': 'OptionEntityFade'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityFade'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityFade:94028702870272', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_fade.EntityFade'>, 'config': {'title': 'EntityFade'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_fade.EntityFade'>>]}, 'ref': 'kittycad.models.entity_fade.EntityFade:94028695819264', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EntityFade', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_fade', 'schema': {'expected': ['entity_fade'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityFade', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityFade, required=True), 'type': FieldInfo(annotation=Literal['entity_fade'], required=False, default='entity_fade')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36eeb00,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3035400,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityFade",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdda29f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_fade",                                             },                                             expected_py: None,                                             name: "literal['entity_fade']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityFade",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityFade", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdaf630,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdada70,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EntityFade",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3035400,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityFade",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdaf480,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdaff00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdda29f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_fade": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdc0f00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdda29f0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_fade'",                                         name: "literal['entity_fade']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_fade']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityFade",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36eeb00,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityFade",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_fade.EntityFade, type: Literal['entity_fade'] = 'entity_fade') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityFade[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityFade, required=True), 'type': FieldInfo(annotation=Literal['entity_fade'], required=False, default='entity_fade')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_fade'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetAllChildUuids(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_all_child_uuids.EntityGetAllChildUuids'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_all_child_uuids']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetAllChildUuids'>, 'config': {'title': 'OptionEntityGetAllChildUuids'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetAllChildUuids'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetAllChildUuids:94028703286816', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_all_child_uuids.EntityGetAllChildUuids'>, 'config': {'title': 'EntityGetAllChildUuids'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_all_child_uuids.EntityGetAllChildUuids'>>]}, 'ref': 'kittycad.models.entity_get_all_child_uuids.EntityGetAllChildUuids:94028695821696', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'EntityGetAllChildUuids', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_all_child_uuids', 'schema': {'expected': ['entity_get_all_child_uuids'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetAllChildUuids', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetAllChildUuids, required=True), 'type': FieldInfo(annotation=Literal['entity_get_all_child_uuids'], required=False, default='entity_get_all_child_uuids')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3754620,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde08d00,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_all_child_uuids",                                             },                                             expected_py: None,                                             name: "literal['entity_get_all_child_uuids']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3035d80,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007fe0bd34de30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetAllChildUuids",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetAllChildUuids",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetAllChildUuids", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5d440,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5d470,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007fe0bcc7a1f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007fe0bcc7a1b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd34de30,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetAllChildUuids",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3035d80,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityGetAllChildUuids",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5d500,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5d530,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde08d00,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_all_child_uuids": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc7a240,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde08d00,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_all_child_uuids'",                                         name: "literal['entity_get_all_child_uuids']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_all_child_uuids']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetAllChildUuids",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3754620,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityGetAllChildUuids",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_all_child_uuids.EntityGetAllChildUuids, type: Literal['entity_get_all_child_uuids'] = 'entity_get_all_child_uuids') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetAllChildUuids[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetAllChildUuids, required=True), 'type': FieldInfo(annotation=Literal['entity_get_all_child_uuids'], required=False, default='entity_get_all_child_uuids')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_all_child_uuids'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetChildUuid(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_child_uuid.EntityGetChildUuid'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_child_uuid']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetChildUuid'>, 'config': {'title': 'OptionEntityGetChildUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetChildUuid'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetChildUuid:94028703253376', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_child_uuid.EntityGetChildUuid'>, 'config': {'title': 'EntityGetChildUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_child_uuid.EntityGetChildUuid'>>]}, 'ref': 'kittycad.models.entity_get_child_uuid.EntityGetChildUuid:94028695829648', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'EntityGetChildUuid', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_child_uuid', 'schema': {'expected': ['entity_get_child_uuid'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetChildUuid', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetChildUuid, required=True), 'type': FieldInfo(annotation=Literal['entity_get_child_uuid'], required=False, default='entity_get_child_uuid')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c374c380,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdf23c30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_child_uuid",                                             },                                             expected_py: None,                                             name: "literal['entity_get_child_uuid']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3037c90,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_id": SerField {                                                     key_py: Py(                                                         0x00007fe0bd34fe70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetChildUuid",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetChildUuid",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetChildUuid", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5ca80,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5cae0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_id",                                                 lookup_key: Simple {                                                     key: "entity_id",                                                     py_key: Py(                                                         0x00007fe0bcc72fb0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_id",                                                                 Py(                                                                     0x00007fe0bcc72f70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd34fe70,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetChildUuid",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3037c90,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityGetChildUuid",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5cab0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5c990,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdf23c30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_child_uuid": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc73000,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdf23c30,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_child_uuid'",                                         name: "literal['entity_get_child_uuid']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_child_uuid']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetChildUuid",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c374c380,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityGetChildUuid",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_child_uuid.EntityGetChildUuid, type: Literal['entity_get_child_uuid'] = 'entity_get_child_uuid') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetChildUuid[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetChildUuid, required=True), 'type': FieldInfo(annotation=Literal['entity_get_child_uuid'], required=False, default='entity_get_child_uuid')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_child_uuid'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetDistance(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_distance.EntityGetDistance'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_distance']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetDistance'>, 'config': {'title': 'OptionEntityGetDistance'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetDistance'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetDistance:94028704065264', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_distance.EntityGetDistance'>, 'config': {'title': 'EntityGetDistance'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_distance.EntityGetDistance'>>]}, 'ref': 'kittycad.models.entity_get_distance.EntityGetDistance:94028695834576', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'max_distance': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}, 'min_distance': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}}, 'model_name': 'EntityGetDistance', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_distance', 'schema': {'expected': ['entity_get_distance'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetDistance', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetDistance, required=True), 'type': FieldInfo(annotation=Literal['entity_get_distance'], required=False, default='entity_get_distance')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c38126f0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3038fd0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "max_distance": SerField {                                                     key_py: Py(                                                         0x00007fe0c0ad9770,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "min_distance": SerField {                                                     key_py: Py(                                                         0x00007fe0bd3434f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetDistance",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdf20f70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_distance",                                             },                                             expected_py: None,                                             name: "literal['entity_get_distance']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetDistance",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetDistance", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd1410,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd13e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "max_distance",                                                 lookup_key: Simple {                                                     key: "max_distance",                                                     py_key: Py(                                                         0x00007fe0bccf48f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "max_distance",                                                                 Py(                                                                     0x00007fe0bccf48b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c0ad9770,                                                 ),                                                 validator: FunctionAfter(                                                     FunctionAfterValidator {                                                         validator: Float(                                                             FloatValidator {                                                                 strict: false,                                                                 allow_inf_nan: true,                                                             },                                                         ),                                                         func: Py(                                                             0x00005584c3038b40,                                                         ),                                                         config: Py(                                                             0x00007fe0bccf4680,                                                         ),                                                         name: "function-after[LengthUnit(), float]",                                                         field_name: None,                                                         info_arg: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "min_distance",                                                 lookup_key: Simple {                                                     key: "min_distance",                                                     py_key: Py(                                                         0x00007fe0bccf4970,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "min_distance",                                                                 Py(                                                                     0x00007fe0bccf4930,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd3434f0,                                                 ),                                                 validator: FunctionAfter(                                                     FunctionAfterValidator {                                                         validator: Float(                                                             FloatValidator {                                                                 strict: false,                                                                 allow_inf_nan: true,                                                             },                                                         ),                                                         func: Py(                                                             0x00005584c3038b40,                                                         ),                                                         config: Py(                                                             0x00007fe0bccf4680,                                                         ),                                                         name: "function-after[LengthUnit(), float]",                                                         field_name: None,                                                         info_arg: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetDistance",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3038fd0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityGetDistance",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd11d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd1110,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdf20f70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_distance": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccf4a00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdf20f70,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_distance'",                                         name: "literal['entity_get_distance']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_distance']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetDistance",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c38126f0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityGetDistance",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_distance.EntityGetDistance, type: Literal['entity_get_distance'] = 'entity_get_distance') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetDistance[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetDistance, required=True), 'type': FieldInfo(annotation=Literal['entity_get_distance'], required=False, default='entity_get_distance')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_distance'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetNumChildren(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_num_children.EntityGetNumChildren'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_num_children']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetNumChildren'>, 'config': {'title': 'OptionEntityGetNumChildren'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetNumChildren'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetNumChildren:94028703264000', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_num_children.EntityGetNumChildren'>, 'config': {'title': 'EntityGetNumChildren'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_num_children.EntityGetNumChildren'>>]}, 'ref': 'kittycad.models.entity_get_num_children.EntityGetNumChildren:94028695810592', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'num': {'metadata': {}, 'schema': {'type': 'int'}, 'type': 'model-field'}}, 'model_name': 'EntityGetNumChildren', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_num_children', 'schema': {'expected': ['entity_get_num_children'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetNumChildren', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetNumChildren, required=True), 'type': FieldInfo(annotation=Literal['entity_get_num_children'], required=False, default='entity_get_num_children')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c374ed00,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdf23570,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_num_children",                                             },                                             expected_py: None,                                             name: "literal['entity_get_num_children']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3033220,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "num": SerField {                                                     key_py: Py(                                                         0x00007fe0c0d37750,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Int(                                                             IntSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetNumChildren",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetNumChildren",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetNumChildren", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5c660,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5c5a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "num",                                                 lookup_key: Simple {                                                     key: "num",                                                     py_key: Py(                                                         0x00007fe0bcc5c5d0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "num",                                                                 Py(                                                                     0x00007fe0bcc5c4b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c0d37750,                                                 ),                                                 validator: Int(                                                     IntValidator {                                                         strict: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetNumChildren",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3033220,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityGetNumChildren",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5c750,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5c720,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdf23570,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_num_children": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc78080,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdf23570,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_num_children'",                                         name: "literal['entity_get_num_children']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_num_children']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetNumChildren",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c374ed00,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityGetNumChildren",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_num_children.EntityGetNumChildren, type: Literal['entity_get_num_children'] = 'entity_get_num_children') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetNumChildren[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetNumChildren, required=True), 'type': FieldInfo(annotation=Literal['entity_get_num_children'], required=False, default='entity_get_num_children')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_num_children'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetParentId(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_parent_id.EntityGetParentId'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_parent_id']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetParentId'>, 'config': {'title': 'OptionEntityGetParentId'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetParentId'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetParentId:94028703274880', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_parent_id.EntityGetParentId'>, 'config': {'title': 'EntityGetParentId'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_parent_id.EntityGetParentId'>>]}, 'ref': 'kittycad.models.entity_get_parent_id.EntityGetParentId:94028695815584', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'EntityGetParentId', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_parent_id', 'schema': {'expected': ['entity_get_parent_id'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetParentId', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetParentId, required=True), 'type': FieldInfo(annotation=Literal['entity_get_parent_id'], required=False, default='entity_get_parent_id')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3751780,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdf21570,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_parent_id",                                             },                                             expected_py: None,                                             name: "literal['entity_get_parent_id']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c30345a0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_id": SerField {                                                     key_py: Py(                                                         0x00007fe0bd34fe70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetParentId",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetParentId",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetParentId", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5d170,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5d1a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_id",                                                 lookup_key: Simple {                                                     key: "entity_id",                                                     py_key: Py(                                                         0x00007fe0bcc790b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_id",                                                                 Py(                                                                     0x00007fe0bcc79070,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd34fe70,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetParentId",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c30345a0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityGetParentId",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5d1d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5d200,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdf21570,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_parent_id": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc79100,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdf21570,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_parent_id'",                                         name: "literal['entity_get_parent_id']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_parent_id']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetParentId",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3751780,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityGetParentId",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_parent_id.EntityGetParentId, type: Literal['entity_get_parent_id'] = 'entity_get_parent_id') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetParentId[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetParentId, required=True), 'type': FieldInfo(annotation=Literal['entity_get_parent_id'], required=False, default='entity_get_parent_id')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_parent_id'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityGetSketchPaths(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_get_sketch_paths.EntityGetSketchPaths'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_get_sketch_paths']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetSketchPaths'>, 'config': {'title': 'OptionEntityGetSketchPaths'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetSketchPaths'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityGetSketchPaths:94028703298800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_get_sketch_paths.EntityGetSketchPaths'>, 'config': {'title': 'EntityGetSketchPaths'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_get_sketch_paths.EntityGetSketchPaths'>>]}, 'ref': 'kittycad.models.entity_get_sketch_paths.EntityGetSketchPaths:94028695840016', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'EntityGetSketchPaths', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_get_sketch_paths', 'schema': {'expected': ['entity_get_sketch_paths'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityGetSketchPaths', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetSketchPaths, required=True), 'type': FieldInfo(annotation=Literal['entity_get_sketch_paths'], required=False, default='entity_get_sketch_paths')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37574f0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c303a510,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007fe0bd34de30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityGetSketchPaths",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdf22970,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_get_sketch_paths",                                             },                                             expected_py: None,                                             name: "literal['entity_get_sketch_paths']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityGetSketchPaths",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityGetSketchPaths", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1f180,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1f750,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007fe0bdead9f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007fe0bcc4dcb0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd34de30,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityGetSketchPaths",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c303a510,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityGetSketchPaths",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1f210,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1fb70,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdf22970,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_get_sketch_paths": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc71480,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdf22970,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_get_sketch_paths'",                                         name: "literal['entity_get_sketch_paths']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_get_sketch_paths']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityGetSketchPaths",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37574f0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityGetSketchPaths",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_get_sketch_paths.EntityGetSketchPaths, type: Literal['entity_get_sketch_paths'] = 'entity_get_sketch_paths') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityGetSketchPaths[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityGetSketchPaths, required=True), 'type': FieldInfo(annotation=Literal['entity_get_sketch_paths'], required=False, default='entity_get_sketch_paths')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_get_sketch_paths'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPattern(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_linear_pattern.EntityLinearPattern'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_linear_pattern']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPattern'>, 'config': {'title': 'OptionEntityLinearPattern'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPattern'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPattern:94028704091072', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_linear_pattern.EntityLinearPattern'>, 'config': {'title': 'EntityLinearPattern'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_linear_pattern.EntityLinearPattern'>>]}, 'ref': 'kittycad.models.entity_linear_pattern.EntityLinearPattern:94028695845152', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'EntityLinearPattern', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_linear_pattern', 'schema': {'expected': ['entity_linear_pattern'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityLinearPattern', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityLinearPattern, required=True), 'type': FieldInfo(annotation=Literal['entity_linear_pattern'], required=False, default='entity_linear_pattern')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3818bc0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c303b920,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007fe0bd34de30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityLinearPattern",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdf23cf0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_linear_pattern",                                             },                                             expected_py: None,                                             name: "literal['entity_linear_pattern']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityLinearPattern",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityLinearPattern", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd1d40,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd1d70,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007fe0bccf6c70,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007fe0bccf6c30,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd34de30,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityLinearPattern",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c303b920,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityLinearPattern",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd1da0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd1dd0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdf23cf0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_linear_pattern": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccf6cc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdf23cf0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_linear_pattern'",                                         name: "literal['entity_linear_pattern']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_linear_pattern']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityLinearPattern",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3818bc0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityLinearPattern",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_linear_pattern.EntityLinearPattern, type: Literal['entity_linear_pattern'] = 'entity_linear_pattern') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityLinearPattern[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityLinearPattern, required=True), 'type': FieldInfo(annotation=Literal['entity_linear_pattern'], required=False, default='entity_linear_pattern')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_linear_pattern'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPatternTransform(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_linear_pattern_transform.EntityLinearPatternTransform'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_linear_pattern_transform']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPatternTransform'>, 'config': {'title': 'OptionEntityLinearPatternTransform'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPatternTransform'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityLinearPatternTransform:94028704078816', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_linear_pattern_transform.EntityLinearPatternTransform'>, 'config': {'title': 'EntityLinearPatternTransform'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_linear_pattern_transform.EntityLinearPatternTransform'>>]}, 'ref': 'kittycad.models.entity_linear_pattern_transform.EntityLinearPatternTransform:94028695850544', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'EntityLinearPatternTransform', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_linear_pattern_transform', 'schema': {'expected': ['entity_linear_pattern_transform'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityLinearPatternTransform', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityLinearPatternTransform, required=True), 'type': FieldInfo(annotation=Literal['entity_linear_pattern_transform'], required=False, default='entity_linear_pattern_transform')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3815be0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde08cb0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_linear_pattern_transform",                                             },                                             expected_py: None,                                             name: "literal['entity_linear_pattern_transform']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c303ce30,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007fe0bd34de30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityLinearPatternTransform",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityLinearPatternTransform",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityLinearPatternTransform", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd04e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd0240,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007fe0bccf5a70,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007fe0bccf5a30,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd34de30,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "EntityLinearPatternTransform",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c303ce30,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityLinearPatternTransform",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd02d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd0a80,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde08cb0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_linear_pattern_transform": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccf5ac0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde08cb0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_linear_pattern_transform'",                                         name: "literal['entity_linear_pattern_transform']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_linear_pattern_transform']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityLinearPatternTransform",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3815be0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityLinearPatternTransform",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_linear_pattern_transform.EntityLinearPatternTransform, type: Literal['entity_linear_pattern_transform'] = 'entity_linear_pattern_transform') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityLinearPatternTransform[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityLinearPatternTransform, required=True), 'type': FieldInfo(annotation=Literal['entity_linear_pattern_transform'], required=False, default='entity_linear_pattern_transform')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_linear_pattern_transform'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityMakeHelix(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_make_helix.EntityMakeHelix'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_make_helix']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMakeHelix'>, 'config': {'title': 'OptionEntityMakeHelix'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMakeHelix'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityMakeHelix:94028702390560', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_make_helix.EntityMakeHelix'>, 'config': {'title': 'EntityMakeHelix'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_make_helix.EntityMakeHelix'>>]}, 'ref': 'kittycad.models.entity_make_helix.EntityMakeHelix:94028695872288', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EntityMakeHelix', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_make_helix', 'schema': {'expected': ['entity_make_helix'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityMakeHelix', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMakeHelix, required=True), 'type': FieldInfo(annotation=Literal['entity_make_helix'], required=False, default='entity_make_helix')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3679920,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3042320,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityMakeHelix",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdf23d70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_make_helix",                                             },                                             expected_py: None,                                             name: "literal['entity_make_helix']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityMakeHelix",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityMakeHelix", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdaf840,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdaf060,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EntityMakeHelix",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3042320,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityMakeHelix",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdaf7e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdaf030,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdf23d70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_make_helix": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcf43d00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdf23d70,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_make_helix'",                                         name: "literal['entity_make_helix']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_make_helix']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityMakeHelix",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3679920,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityMakeHelix",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_make_helix.EntityMakeHelix, type: Literal['entity_make_helix'] = 'entity_make_helix') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityMakeHelix[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMakeHelix, required=True), 'type': FieldInfo(annotation=Literal['entity_make_helix'], required=False, default='entity_make_helix')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_make_helix'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityMirror(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_mirror.EntityMirror'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_mirror']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirror'>, 'config': {'title': 'OptionEntityMirror'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirror'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirror:94028702400368', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_mirror.EntityMirror'>, 'config': {'title': 'EntityMirror'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_mirror.EntityMirror'>>]}, 'ref': 'kittycad.models.entity_mirror.EntityMirror:94028695875536', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EntityMirror', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_mirror', 'schema': {'expected': ['entity_mirror'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityMirror', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMirror, required=True), 'type': FieldInfo(annotation=Literal['entity_mirror'], required=False, default='entity_mirror')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c367bf70,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bdf208f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_mirror",                                             },                                             expected_py: None,                                             name: "literal['entity_mirror']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3042fd0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityMirror",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityMirror",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityMirror", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdaeb50,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdadec0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EntityMirror",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3042fd0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityMirror",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdafb70,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdae880,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bdf208f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_mirror": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde0980,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bdf208f0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_mirror'",                                         name: "literal['entity_mirror']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_mirror']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityMirror",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c367bf70,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityMirror",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_mirror.EntityMirror, type: Literal['entity_mirror'] = 'entity_mirror') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityMirror[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMirror, required=True), 'type': FieldInfo(annotation=Literal['entity_mirror'], required=False, default='entity_mirror')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_mirror'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntityMirrorAcrossEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_mirror_across_edge.EntityMirrorAcrossEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_mirror_across_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirrorAcrossEdge'>, 'config': {'title': 'OptionEntityMirrorAcrossEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirrorAcrossEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntityMirrorAcrossEdge:94028702409824', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_mirror_across_edge.EntityMirrorAcrossEdge'>, 'config': {'title': 'EntityMirrorAcrossEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_mirror_across_edge.EntityMirrorAcrossEdge'>>]}, 'ref': 'kittycad.models.entity_mirror_across_edge.EntityMirrorAcrossEdge:94028695860752', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EntityMirrorAcrossEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_mirror_across_edge', 'schema': {'expected': ['entity_mirror_across_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntityMirrorAcrossEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMirrorAcrossEdge, required=True), 'type': FieldInfo(annotation=Literal['entity_mirror_across_edge'], required=False, default='entity_mirror_across_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c367e460,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c303f610,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntityMirrorAcrossEdge",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde08c10,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_mirror_across_edge",                                             },                                             expected_py: None,                                             name: "literal['entity_mirror_across_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntityMirrorAcrossEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntityMirrorAcrossEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45320,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc45170,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EntityMirrorAcrossEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c303f610,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntityMirrorAcrossEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc450b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc45140,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde08c10,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_mirror_across_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcddb840,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde08c10,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_mirror_across_edge'",                                         name: "literal['entity_mirror_across_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_mirror_across_edge']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntityMirrorAcrossEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c367e460,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntityMirrorAcrossEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_mirror_across_edge.EntityMirrorAcrossEdge, type: Literal['entity_mirror_across_edge'] = 'entity_mirror_across_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntityMirrorAcrossEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntityMirrorAcrossEdge, required=True), 'type': FieldInfo(annotation=Literal['entity_mirror_across_edge'], required=False, default='entity_mirror_across_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_mirror_across_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionEntitySetOpacity(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.entity_set_opacity.EntitySetOpacity'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['entity_set_opacity']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionEntitySetOpacity'>, 'config': {'title': 'OptionEntitySetOpacity'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionEntitySetOpacity'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionEntitySetOpacity:94028702860816', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.entity_set_opacity.EntitySetOpacity'>, 'config': {'title': 'EntitySetOpacity'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.entity_set_opacity.EntitySetOpacity'>>]}, 'ref': 'kittycad.models.entity_set_opacity.EntitySetOpacity:94028695865168', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'EntitySetOpacity', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'entity_set_opacity', 'schema': {'expected': ['entity_set_opacity'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionEntitySetOpacity', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntitySetOpacity, required=True), 'type': FieldInfo(annotation=Literal['entity_set_opacity'], required=False, default='entity_set_opacity')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36ec610,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be2ea6b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "entity_set_opacity",                                             },                                             expected_py: None,                                             name: "literal['entity_set_opacity']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3040750,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "EntitySetOpacity",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionEntitySetOpacity",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionEntitySetOpacity", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45d40,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bdd39e00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "EntitySetOpacity",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3040750,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "EntitySetOpacity",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdafae0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdadb30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be2ea6b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "entity_set_opacity": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdc1e40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be2ea6b0,                                                 ),                                             ],                                         },                                         expected_repr: "'entity_set_opacity'",                                         name: "literal['entity_set_opacity']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['entity_set_opacity']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionEntitySetOpacity",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36ec610,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionEntitySetOpacity",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.entity_set_opacity.EntitySetOpacity, type: Literal['entity_set_opacity'] = 'entity_set_opacity') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: EntitySetOpacity[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=EntitySetOpacity, required=True), 'type': FieldInfo(annotation=Literal['entity_set_opacity'], required=False, default='entity_set_opacity')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['entity_set_opacity'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionExport(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.export.Export'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['export']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionExport'>, 'config': {'title': 'OptionExport'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionExport'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionExport:94028703206928', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.export.Export'>, 'config': {'title': 'Export'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.export.Export'>>]}, 'ref': 'kittycad.models.export.Export:94028695956944', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'files': {'metadata': {}, 'schema': {'items_schema': {'cls': <class 'kittycad.models.export_file.ExportFile'>, 'config': {'title': 'ExportFile'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.export_file.ExportFile'>>]}, 'ref': 'kittycad.models.export_file.ExportFile:94028695947792', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'contents': {'metadata': {}, 'schema': {'function': {'function': <bound method Base64Data.validate of <class 'kittycad.models.base64data.Base64Data'>>, 'type': 'no-info'}, 'schema': {'choices': [{'type': 'str'}, {'type': 'bytes'}], 'type': 'union'}, 'serialization': {'function': <bound method Base64Data.serialize of <class 'kittycad.models.base64data.Base64Data'>>, 'type': 'function-plain'}, 'type': 'function-after'}, 'type': 'model-field'}, 'name': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'ExportFile', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'Export', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'export', 'schema': {'expected': ['export'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionExport', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Export, required=True), 'type': FieldInfo(annotation=Literal['export'], required=False, default='export')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3740e10,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3056dd0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "files": SerField {                                                     key_py: Py(                                                         0x00007fe0c1bd6b80,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Model(                                                                     ModelSerializer {                                                                         class: Py(                                                                             0x00005584c3054a10,                                                                         ),                                                                         serializer: Fields(                                                                             GeneralFieldsSerializer {                                                                                 fields: {                                                                                     "name": SerField {                                                                                         key_py: Py(                                                                                             0x00007fe0c1c20668,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Str(                                                                                                 StrSerializer,                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "contents": SerField {                                                                                         key_py: Py(                                                                                             0x00007fe0c1bda960,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Function(                                                                                                 FunctionPlainSerializer {                                                                                                     func: Py(                                                                                                         0x00007fe0bd13e5c0,                                                                                                     ),                                                                                                     name: "plain_function[serialize]",                                                                                                     function_name: "serialize",                                                                                                     return_serializer: Any(                                                                                                         AnySerializer,                                                                                                     ),                                                                                                     fallback_serializer: None,                                                                                                     when_used: Always,                                                                                                     is_field_serializer: false,                                                                                                     info_arg: false,                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                 },                                                                                 computed_fields: Some(                                                                                     ComputedFields(                                                                                         [],                                                                                     ),                                                                                 ),                                                                                 mode: SimpleDict,                                                                                 extra_serializer: None,                                                                                 filter: SchemaFilter {                                                                                     include: None,                                                                                     exclude: None,                                                                                 },                                                                                 required_fields: 2,                                                                             },                                                                         ),                                                                         has_extra: false,                                                                         root_model: false,                                                                         name: "ExportFile",                                                                     },                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[ExportFile]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Export",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0c0398990,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "export",                                             },                                             expected_py: None,                                             name: "literal['export']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionExport",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionExport", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc458f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44240,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "files",                                                 lookup_key: Simple {                                                     key: "files",                                                     py_key: Py(                                                         0x00007fe0bcc454a0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "files",                                                                 Py(                                                                     0x00007fe0bcc45d70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1bd6b80,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Model(                                                                 ModelValidator {                                                                     revalidate: Never,                                                                     validator: ModelFields(                                                                         ModelFieldsValidator {                                                                             fields: [                                                                                 Field {                                                                                     name: "contents",                                                                                     lookup_key: Simple {                                                                                         key: "contents",                                                                                         py_key: Py(                                                                                             0x00007fe0bde66bb0,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "contents",                                                                                                     Py(                                                                                                         0x00007fe0bdd28430,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007fe0c1bda960,                                                                                     ),                                                                                     validator: FunctionAfter(                                                                                         FunctionAfterValidator {                                                                                             validator: Union(                                                                                                 UnionValidator {                                                                                                     mode: Smart,                                                                                                     choices: [                                                                                                         (                                                                                                             Str(                                                                                                                 StrValidator {                                                                                                                     strict: false,                                                                                                                     coerce_numbers_to_str: false,                                                                                                                 },                                                                                                             ),                                                                                                             None,                                                                                                         ),                                                                                                         (                                                                                                             Bytes(                                                                                                                 BytesValidator {                                                                                                                     strict: false,                                                                                                                     bytes_mode: ValBytesMode {                                                                                                                         ser: Utf8,                                                                                                                     },                                                                                                                 },                                                                                                             ),                                                                                                             None,                                                                                                         ),                                                                                                     ],                                                                                                     custom_error: None,                                                                                                     strict: false,                                                                                                     name: "union[str,bytes]",                                                                                                 },                                                                                             ),                                                                                             func: Py(                                                                                                 0x00007fe0bd13e580,                                                                                             ),                                                                                             config: Py(                                                                                                 0x00007fe0bcc60fc0,                                                                                             ),                                                                                             name: "function-after[validate(), union[str,bytes]]",                                                                                             field_name: None,                                                                                             info_arg: false,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "name",                                                                                     lookup_key: Simple {                                                                                         key: "name",                                                                                         py_key: Py(                                                                                             0x00007fe0bcc46040,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "name",                                                                                                     Py(                                                                                                         0x00007fe0bcc44d50,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007fe0c1c20668,                                                                                     ),                                                                                     validator: Str(                                                                                         StrValidator {                                                                                             strict: false,                                                                                             coerce_numbers_to_str: false,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                             ],                                                                             model_name: "ExportFile",                                                                             extra_behavior: Ignore,                                                                             extras_validator: None,                                                                             strict: false,                                                                             from_attributes: false,                                                                             loc_by_alias: true,                                                                         },                                                                     ),                                                                     class: Py(                                                                         0x00005584c3054a10,                                                                     ),                                                                     generic_origin: None,                                                                     post_init: None,                                                                     frozen: false,                                                                     custom_init: false,                                                                     root_model: false,                                                                     undefined: Py(                                                                         0x00007fe0bfae63d0,                                                                     ),                                                                     name: "ExportFile",                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Export",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3056dd0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Export",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc455c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc44f60,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0c0398990,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "export": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc54140,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0c0398990,                                                 ),                                             ],                                         },                                         expected_repr: "'export'",                                         name: "literal['export']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['export']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionExport",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3740e10,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionExport",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.export.Export, type: Literal['export'] = 'export') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Export[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Export, required=True), 'type': FieldInfo(annotation=Literal['export'], required=False, default='export')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['export'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionExtendPath(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.extend_path.ExtendPath'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['extend_path']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionExtendPath'>, 'config': {'title': 'OptionExtendPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionExtendPath'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionExtendPath:94028702681632', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.extend_path.ExtendPath'>, 'config': {'title': 'ExtendPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.extend_path.ExtendPath'>>]}, 'ref': 'kittycad.models.extend_path.ExtendPath:94028695968736', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'ExtendPath', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'extend_path', 'schema': {'expected': ['extend_path'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionExtendPath', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ExtendPath, required=True), 'type': FieldInfo(annotation=Literal['extend_path'], required=False, default='extend_path')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36c0a20,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be4e35b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "extend_path",                                             },                                             expected_py: None,                                             name: "literal['extend_path']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3059be0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ExtendPath",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionExtendPath",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionExtendPath", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc44a50,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44a80,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "ExtendPath",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3059be0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "ExtendPath",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc44ab0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc44ae0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be4e35b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "extend_path": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde50c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be4e35b0,                                                 ),                                             ],                                         },                                         expected_repr: "'extend_path'",                                         name: "literal['extend_path']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['extend_path']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionExtendPath",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36c0a20,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionExtendPath",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.extend_path.ExtendPath, type: Literal['extend_path'] = 'extend_path') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ExtendPath[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ExtendPath, required=True), 'type': FieldInfo(annotation=Literal['extend_path'], required=False, default='extend_path')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['extend_path'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionExtrude(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.extrude.Extrude'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['extrude']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionExtrude'>, 'config': {'title': 'OptionExtrude'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionExtrude'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionExtrude:94028702315904', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.extrude.Extrude'>, 'config': {'title': 'Extrude'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.extrude.Extrude'>>]}, 'ref': 'kittycad.models.extrude.Extrude:94028696088848', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Extrude', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'extrude', 'schema': {'expected': ['extrude'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionExtrude', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Extrude, required=True), 'type': FieldInfo(annotation=Literal['extrude'], required=False, default='extrude')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3667580,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3077110,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Extrude",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be1cab20,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "extrude",                                             },                                             expected_py: None,                                             name: "literal['extrude']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionExtrude",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionExtrude", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdae400,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdade30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Extrude",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3077110,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Extrude",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdae370,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdadf50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be1cab20,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "extrude": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bd20cb00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be1cab20,                                                 ),                                             ],                                         },                                         expected_repr: "'extrude'",                                         name: "literal['extrude']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['extrude']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionExtrude",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3667580,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionExtrude",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.extrude.Extrude, type: Literal['extrude'] = 'extrude') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Extrude[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Extrude, required=True), 'type': FieldInfo(annotation=Literal['extrude'], required=False, default='extrude')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['extrude'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionExtrusionFaceInfo(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['extrusion_face_info']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionExtrusionFaceInfo'>, 'config': {'title': 'OptionExtrusionFaceInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionExtrusionFaceInfo'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionExtrusionFaceInfo:94028704136976', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo'>, 'config': {'title': 'ExtrusionFaceInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo'>>]}, 'ref': 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo:94028696112192', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'cap': {'metadata': {}, 'schema': {'cls': <enum 'ExtrusionFaceCapType'>, 'members': [ExtrusionFaceCapType.NONE, ExtrusionFaceCapType.TOP, ExtrusionFaceCapType.BOTTOM, ExtrusionFaceCapType.BOTH], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.extrusion_face_cap_type.ExtrusionFaceCapType:94028696108464', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'curve_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'face_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'ExtrusionFaceInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'extrusion_face_info', 'schema': {'expected': ['extrusion_face_info'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionExtrusionFaceInfo', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ExtrusionFaceInfo, required=True), 'type': FieldInfo(annotation=Literal['extrusion_face_info'], required=False, default='extrusion_face_info')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3823f10,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be2ebbb0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "extrusion_face_info",                                             },                                             expected_py: None,                                             name: "literal['extrusion_face_info']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c307cc40,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "face_id": SerField {                                                     key_py: Py(                                                         0x00007fe0bdd3ac40,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "cap": SerField {                                                     key_py: Py(                                                         0x00007fe0bf9aefd0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x00005584c307bdb0,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "curve_id": SerField {                                                     key_py: Py(                                                         0x00007fe0bd1625f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 3,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ExtrusionFaceInfo",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionExtrusionFaceInfo",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionExtrusionFaceInfo", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd1e00,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd1ce0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "cap",                                                 lookup_key: Simple {                                                     key: "cap",                                                     py_key: Py(                                                         0x00007fe0bccd1f80,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "cap",                                                                 Py(                                                                     0x00007fe0bccd1e90,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bf9aefd0,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x00005584c307bdb0,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "bottom": 2,                                                                     "both": 3,                                                                     "top": 1,                                                                     "none": 0,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007fe0bccf5440,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007fe0bd32ccb0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd32cd10,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd32cd70,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd32cdd0,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'none', 'top', 'bottom' or 'both'",                                                         strict: false,                                                         class_repr: "ExtrusionFaceCapType",                                                         name: "str-enum[ExtrusionFaceCapType]",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "curve_id",                                                 lookup_key: Simple {                                                     key: "curve_id",                                                     py_key: Py(                                                         0x00007fe0bccf4ff0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "curve_id",                                                                 Py(                                                                     0x00007fe0bccf5330,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd1625f0,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "face_id",                                                 lookup_key: Simple {                                                     key: "face_id",                                                     py_key: Py(                                                         0x00007fe0bccd1f50,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "face_id",                                                                 Py(                                                                     0x00007fe0bccd1ef0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bdd3ac40,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ExtrusionFaceInfo",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c307cc40,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "ExtrusionFaceInfo",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd0de0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd1cb0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be2ebbb0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "extrusion_face_info": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccf4200,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be2ebbb0,                                                 ),                                             ],                                         },                                         expected_repr: "'extrusion_face_info'",                                         name: "literal['extrusion_face_info']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['extrusion_face_info']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionExtrusionFaceInfo",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3823f10,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionExtrusionFaceInfo",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.extrusion_face_info.ExtrusionFaceInfo, type: Literal['extrusion_face_info'] = 'extrusion_face_info') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ExtrusionFaceInfo[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ExtrusionFaceInfo, required=True), 'type': FieldInfo(annotation=Literal['extrusion_face_info'], required=False, default='extrusion_face_info')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['extrusion_face_info'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionFaceGetCenter(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.face_get_center.FaceGetCenter'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['face_get_center']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetCenter'>, 'config': {'title': 'OptionFaceGetCenter'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetCenter'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetCenter:94028703894560', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.face_get_center.FaceGetCenter'>, 'config': {'title': 'FaceGetCenter'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.face_get_center.FaceGetCenter'>>]}, 'ref': 'kittycad.models.face_get_center.FaceGetCenter:94028696097680', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'pos': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'FaceGetCenter', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'face_get_center', 'schema': {'expected': ['face_get_center'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionFaceGetCenter', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetCenter, required=True), 'type': FieldInfo(annotation=Literal['face_get_center'], required=False, default='face_get_center')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37e8c20,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3079390,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "pos": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c210d8,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x00005584c218d2f0,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "x": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24420,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "y": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24450,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "z": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24480,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 3,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "Point3d",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "FaceGetCenter",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be2e9130,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "face_get_center",                                             },                                             expected_py: None,                                             name: "literal['face_get_center']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionFaceGetCenter",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionFaceGetCenter", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd01b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd0210,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "pos",                                                 lookup_key: Simple {                                                     key: "pos",                                                     py_key: Py(                                                         0x00007fe0bccd0180,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "pos",                                                                 Py(                                                                     0x00007fe0bccd0090,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c210d8,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "x",                                                                         lookup_key: Simple {                                                                             key: "x",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24420,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "x",                                                                                         Py(                                                                                             0x00007fe0c1c24420,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24420,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "y",                                                                         lookup_key: Simple {                                                                             key: "y",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24450,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "y",                                                                                         Py(                                                                                             0x00007fe0c1c24450,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24450,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "z",                                                                         lookup_key: Simple {                                                                             key: "z",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24480,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "z",                                                                                         Py(                                                                                             0x00007fe0c1c24480,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24480,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "Point3d",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x00005584c218d2f0,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                         name: "Point3d",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "FaceGetCenter",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3079390,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "FaceGetCenter",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd01e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd00c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be2e9130,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "face_get_center": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccdb300,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be2e9130,                                                 ),                                             ],                                         },                                         expected_repr: "'face_get_center'",                                         name: "literal['face_get_center']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['face_get_center']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionFaceGetCenter",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37e8c20,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionFaceGetCenter",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.face_get_center.FaceGetCenter, type: Literal['face_get_center'] = 'face_get_center') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: FaceGetCenter[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetCenter, required=True), 'type': FieldInfo(annotation=Literal['face_get_center'], required=False, default='face_get_center')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['face_get_center'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionFaceGetGradient(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.face_get_gradient.FaceGetGradient'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['face_get_gradient']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetGradient'>, 'config': {'title': 'OptionFaceGetGradient'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetGradient'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetGradient:94028703910416', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.face_get_gradient.FaceGetGradient'>, 'config': {'title': 'FaceGetGradient'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.face_get_gradient.FaceGetGradient'>>]}, 'ref': 'kittycad.models.face_get_gradient.FaceGetGradient:94028696118272', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'df_du': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'df_dv': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'normal': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'FaceGetGradient', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'face_get_gradient', 'schema': {'expected': ['face_get_gradient'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionFaceGetGradient', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetGradient, required=True), 'type': FieldInfo(annotation=Literal['face_get_gradient'], required=False, default='face_get_gradient')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37eca10,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be2e9a30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "face_get_gradient",                                             },                                             expected_py: None,                                             name: "literal['face_get_gradient']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c307e400,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "df_dv": SerField {                                                     key_py: Py(                                                         0x00007fe0bd4801e0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "df_du": SerField {                                                     key_py: Py(                                                         0x00007fe0bd480240,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "normal": SerField {                                                     key_py: Py(                                                         0x00007fe0c03a3210,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 3,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "FaceGetGradient",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionFaceGetGradient",     }, ), definitions=[Model(ModelSerializer { class: Py(0x5584c218d2f0), serializer: Fields(GeneralFieldsSerializer { fields: {"z": SerField { key_py: Py(0x7fe0c1c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7fe0c1c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7fe0c1c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionFaceGetGradient", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd0d20,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd0d50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "df_du",                                                 lookup_key: Simple {                                                     key: "df_du",                                                     py_key: Py(                                                         0x00007fe0bccd0c00,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "df_du",                                                                 Py(                                                                     0x00007fe0bccd0c30,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd480240,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "df_dv",                                                 lookup_key: Simple {                                                     key: "df_dv",                                                     py_key: Py(                                                         0x00007fe0bccd0c60,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "df_dv",                                                                 Py(                                                                     0x00007fe0bccd0c90,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd4801e0,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "normal",                                                 lookup_key: Simple {                                                     key: "normal",                                                     py_key: Py(                                                         0x00007fe0bccd0cc0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "normal",                                                                 Py(                                                                     0x00007fe0bccd0cf0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c03a3210,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "FaceGetGradient",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c307e400,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "FaceGetGradient",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd0d80,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd0db0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be2e9a30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "face_get_gradient": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcce0c40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be2e9a30,                                                 ),                                             ],                                         },                                         expected_repr: "'face_get_gradient'",                                         name: "literal['face_get_gradient']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['face_get_gradient']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionFaceGetGradient",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37eca10,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionFaceGetGradient",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fe0c1c24420), path: LookupPath([S("x", Py(0x7fe0c1c24420))]) }, name_py: Py(0x7fe0c1c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fe0c1c24450), path: LookupPath([S("y", Py(0x7fe0c1c24450))]) }, name_py: Py(0x7fe0c1c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fe0c1c24480), path: LookupPath([S("z", Py(0x7fe0c1c24480))]) }, name_py: Py(0x7fe0c1c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x5584c218d2f0), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fe0bfae63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.face_get_gradient.FaceGetGradient, type: Literal['face_get_gradient'] = 'face_get_gradient') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: FaceGetGradient[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetGradient, required=True), 'type': FieldInfo(annotation=Literal['face_get_gradient'], required=False, default='face_get_gradient')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['face_get_gradient'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionFaceGetPosition(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.face_get_position.FaceGetPosition'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['face_get_position']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetPosition'>, 'config': {'title': 'OptionFaceGetPosition'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetPosition'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionFaceGetPosition:94028703878704', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.face_get_position.FaceGetPosition'>, 'config': {'title': 'FaceGetPosition'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.face_get_position.FaceGetPosition'>>]}, 'ref': 'kittycad.models.face_get_position.FaceGetPosition:94028696135008', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'pos': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'FaceGetPosition', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'face_get_position', 'schema': {'expected': ['face_get_position'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionFaceGetPosition', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetPosition, required=True), 'type': FieldInfo(annotation=Literal['face_get_position'], required=False, default='face_get_position')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37e4e30,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be2eaf70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "face_get_position",                                             },                                             expected_py: None,                                             name: "literal['face_get_position']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3082560,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "pos": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c210d8,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x00005584c218d2f0,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "x": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24420,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "z": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24480,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "y": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c24450,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Float(                                                                                         FloatSerializer {                                                                                             inf_nan_mode: Null,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 3,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "Point3d",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "FaceGetPosition",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionFaceGetPosition",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionFaceGetPosition", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd0630,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd06c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "pos",                                                 lookup_key: Simple {                                                     key: "pos",                                                     py_key: Py(                                                         0x00007fe0bccd08a0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "pos",                                                                 Py(                                                                     0x00007fe0bccd06f0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c210d8,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "x",                                                                         lookup_key: Simple {                                                                             key: "x",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24420,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "x",                                                                                         Py(                                                                                             0x00007fe0c1c24420,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24420,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "y",                                                                         lookup_key: Simple {                                                                             key: "y",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24450,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "y",                                                                                         Py(                                                                                             0x00007fe0c1c24450,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24450,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "z",                                                                         lookup_key: Simple {                                                                             key: "z",                                                                             py_key: Py(                                                                                 0x00007fe0c1c24480,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "z",                                                                                         Py(                                                                                             0x00007fe0c1c24480,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c24480,                                                                         ),                                                                         validator: Float(                                                                             FloatValidator {                                                                                 strict: false,                                                                                 allow_inf_nan: true,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "Point3d",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x00005584c218d2f0,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                         name: "Point3d",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "FaceGetPosition",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3082560,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "FaceGetPosition",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd0690,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd0600,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be2eaf70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "face_get_position": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccd9e00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be2eaf70,                                                 ),                                             ],                                         },                                         expected_repr: "'face_get_position'",                                         name: "literal['face_get_position']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['face_get_position']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionFaceGetPosition",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37e4e30,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionFaceGetPosition",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.face_get_position.FaceGetPosition, type: Literal['face_get_position'] = 'face_get_position') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: FaceGetPosition[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceGetPosition, required=True), 'type': FieldInfo(annotation=Literal['face_get_position'], required=False, default='face_get_position')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['face_get_position'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionFaceIsPlanar(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.face_is_planar.FaceIsPlanar'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['face_is_planar']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceIsPlanar'>, 'config': {'title': 'OptionFaceIsPlanar'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionFaceIsPlanar'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionFaceIsPlanar:94028703850128', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.face_is_planar.FaceIsPlanar'>, 'config': {'title': 'FaceIsPlanar'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.face_is_planar.FaceIsPlanar'>>]}, 'ref': 'kittycad.models.face_is_planar.FaceIsPlanar:94028696142080', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'origin': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'x_axis': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'y_axis': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'z_axis': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'FaceIsPlanar', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'face_is_planar', 'schema': {'expected': ['face_is_planar'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionFaceIsPlanar', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceIsPlanar, required=True), 'type': FieldInfo(annotation=Literal['face_is_planar'], required=False, default='face_is_planar')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37dde90,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be2ea9f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "face_is_planar",                                             },                                             expected_py: None,                                             name: "literal['face_is_planar']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3084100,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "origin": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c20d78,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Recursive(                                                                             DefinitionRefSerializer {                                                                                 definition: "...",                                                                                 retry_with_lax_check: true,                                                                             },                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "z_axis": SerField {                                                     key_py: Py(                                                         0x00007fe0bd482280,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Recursive(                                                                             DefinitionRefSerializer {                                                                                 definition: "...",                                                                                 retry_with_lax_check: true,                                                                             },                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "y_axis": SerField {                                                     key_py: Py(                                                         0x00007fe0bd482190,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Recursive(                                                                             DefinitionRefSerializer {                                                                                 definition: "...",                                                                                 retry_with_lax_check: true,                                                                             },                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "x_axis": SerField {                                                     key_py: Py(                                                         0x00007fe0bd4820a0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Recursive(                                                                             DefinitionRefSerializer {                                                                                 definition: "...",                                                                                 retry_with_lax_check: true,                                                                             },                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 4,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "FaceIsPlanar",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionFaceIsPlanar",     }, ), definitions=[Model(ModelSerializer { class: Py(0x5584c218d2f0), serializer: Fields(GeneralFieldsSerializer { fields: {"x": SerField { key_py: Py(0x7fe0c1c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7fe0c1c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7fe0c1c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionFaceIsPlanar", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5f9c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5fde0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "origin",                                                 lookup_key: Simple {                                                     key: "origin",                                                     py_key: Py(                                                         0x00007fe0bcc5f960,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "origin",                                                                 Py(                                                                     0x00007fe0bcc5f900,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c20d78,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: DefinitionRef(                                                                     DefinitionRefValidator {                                                                         definition: "Point3d",                                                                     },                                                                 ),                                                                 name: "nullable[Point3d]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[Point3d]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "x_axis",                                                 lookup_key: Simple {                                                     key: "x_axis",                                                     py_key: Py(                                                         0x00007fe0bcc5f990,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "x_axis",                                                                 Py(                                                                     0x00007fe0bcc5f930,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd4820a0,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: DefinitionRef(                                                                     DefinitionRefValidator {                                                                         definition: "Point3d",                                                                     },                                                                 ),                                                                 name: "nullable[Point3d]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[Point3d]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "y_axis",                                                 lookup_key: Simple {                                                     key: "y_axis",                                                     py_key: Py(                                                         0x00007fe0bcc5fa20,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "y_axis",                                                                 Py(                                                                     0x00007fe0bcc5f810,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd482190,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: DefinitionRef(                                                                     DefinitionRefValidator {                                                                         definition: "Point3d",                                                                     },                                                                 ),                                                                 name: "nullable[Point3d]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[Point3d]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "z_axis",                                                 lookup_key: Simple {                                                     key: "z_axis",                                                     py_key: Py(                                                         0x00007fe0bcc5f9f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "z_axis",                                                                 Py(                                                                     0x00007fe0bcc5fa80,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd482280,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: DefinitionRef(                                                                     DefinitionRefValidator {                                                                         definition: "Point3d",                                                                     },                                                                 ),                                                                 name: "nullable[Point3d]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[Point3d]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "FaceIsPlanar",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3084100,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "FaceIsPlanar",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5fa50,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5fab0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be2ea9f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "face_is_planar": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccd8900,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be2ea9f0,                                                 ),                                             ],                                         },                                         expected_repr: "'face_is_planar'",                                         name: "literal['face_is_planar']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['face_is_planar']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionFaceIsPlanar",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37dde90,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionFaceIsPlanar",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fe0c1c24420), path: LookupPath([S("x", Py(0x7fe0c1c24420))]) }, name_py: Py(0x7fe0c1c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fe0c1c24450), path: LookupPath([S("y", Py(0x7fe0c1c24450))]) }, name_py: Py(0x7fe0c1c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fe0c1c24480), path: LookupPath([S("z", Py(0x7fe0c1c24480))]) }, name_py: Py(0x7fe0c1c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x5584c218d2f0), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fe0bfae63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.face_is_planar.FaceIsPlanar, type: Literal['face_is_planar'] = 'face_is_planar') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: FaceIsPlanar[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=FaceIsPlanar, required=True), 'type': FieldInfo(annotation=Literal['face_is_planar'], required=False, default='face_is_planar')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['face_is_planar'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionGetEntityType(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.get_entity_type.GetEntityType'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['get_entity_type']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionGetEntityType'>, 'config': {'title': 'OptionGetEntityType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionGetEntityType'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionGetEntityType:94028703675808', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.get_entity_type.GetEntityType'>, 'config': {'title': 'GetEntityType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.get_entity_type.GetEntityType'>>]}, 'ref': 'kittycad.models.get_entity_type.GetEntityType:94028696545840', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_type': {'metadata': {}, 'schema': {'cls': <enum 'EntityType'>, 'members': [EntityType.ENTITY, EntityType.OBJECT, EntityType.PATH, EntityType.CURVE, EntityType.SOLID2D, EntityType.SOLID3D, EntityType.EDGE, EntityType.FACE, EntityType.PLANE, EntityType.VERTEX], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.entity_type.EntityType:94028695869584', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}}, 'model_name': 'GetEntityType', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'get_entity_type', 'schema': {'expected': ['get_entity_type'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionGetEntityType', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetEntityType, required=True), 'type': FieldInfo(annotation=Literal['get_entity_type'], required=False, default='get_entity_type')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37b35a0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be2ead30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "get_entity_type",                                             },                                             expected_py: None,                                             name: "literal['get_entity_type']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c30e6a30,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_type": SerField {                                                     key_py: Py(                                                         0x00007fe0be2ea330,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x00005584c3041890,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "GetEntityType",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionGetEntityType",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionGetEntityType", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5e9d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5e8b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_type",                                                 lookup_key: Simple {                                                     key: "entity_type",                                                     py_key: Py(                                                         0x00007fe0bccb15f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_type",                                                                 Py(                                                                     0x00007fe0bccb15b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0be2ea330,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x00005584c3041890,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "plane": 8,                                                                     "object": 1,                                                                     "path": 2,                                                                     "entity": 0,                                                                     "curve": 3,                                                                     "solid3d": 5,                                                                     "solid2d": 4,                                                                     "edge": 6,                                                                     "face": 7,                                                                     "vertex": 9,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007fe0bccb1540,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007fe0bd3df9b0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd3dfa10,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd3dfa70,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd3dfad0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd3dfb30,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd3dfb90,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd3dfbf0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd3dfc50,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd3dfcb0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd3dfd10,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'entity', 'object', 'path', 'curve', 'solid2d', 'solid3d', 'edge', 'face', 'plane' or 'vertex'",                                                         strict: false,                                                         class_repr: "EntityType",                                                         name: "str-enum[EntityType]",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "GetEntityType",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c30e6a30,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "GetEntityType",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5e7c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5e8e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be2ead30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "get_entity_type": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccb1640,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be2ead30,                                                 ),                                             ],                                         },                                         expected_repr: "'get_entity_type'",                                         name: "literal['get_entity_type']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['get_entity_type']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionGetEntityType",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37b35a0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionGetEntityType",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.get_entity_type.GetEntityType, type: Literal['get_entity_type'] = 'get_entity_type') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: GetEntityType[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetEntityType, required=True), 'type': FieldInfo(annotation=Literal['get_entity_type'], required=False, default='get_entity_type')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['get_entity_type'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionGetNumObjects(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.get_num_objects.GetNumObjects'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['get_num_objects']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionGetNumObjects'>, 'config': {'title': 'OptionGetNumObjects'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionGetNumObjects'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionGetNumObjects:94028703554976', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.get_num_objects.GetNumObjects'>, 'config': {'title': 'GetNumObjects'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.get_num_objects.GetNumObjects'>>]}, 'ref': 'kittycad.models.get_num_objects.GetNumObjects:94028696560112', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'num_objects': {'metadata': {}, 'schema': {'type': 'int'}, 'type': 'model-field'}}, 'model_name': 'GetNumObjects', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'get_num_objects', 'schema': {'expected': ['get_num_objects'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionGetNumObjects', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetNumObjects, required=True), 'type': FieldInfo(annotation=Literal['get_num_objects'], required=False, default='get_num_objects')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3795da0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c30ea1f0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "num_objects": SerField {                                                     key_py: Py(                                                         0x00007fe0be1edfb0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Int(                                                             IntSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "GetNumObjects",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be2e8ab0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "get_num_objects",                                             },                                             expected_py: None,                                             name: "literal['get_num_objects']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionGetNumObjects",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionGetNumObjects", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45800,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44930,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "num_objects",                                                 lookup_key: Simple {                                                     key: "num_objects",                                                     py_key: Py(                                                         0x00007fe0bd49cf70,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "num_objects",                                                                 Py(                                                                     0x00007fe0be6dd370,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0be1edfb0,                                                 ),                                                 validator: Int(                                                     IntValidator {                                                         strict: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "GetNumObjects",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c30ea1f0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "GetNumObjects",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc46070,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdac810,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be2e8ab0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "get_num_objects": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc82880,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be2e8ab0,                                                 ),                                             ],                                         },                                         expected_repr: "'get_num_objects'",                                         name: "literal['get_num_objects']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['get_num_objects']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionGetNumObjects",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3795da0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionGetNumObjects",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.get_num_objects.GetNumObjects, type: Literal['get_num_objects'] = 'get_num_objects') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: GetNumObjects[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetNumObjects, required=True), 'type': FieldInfo(annotation=Literal['get_num_objects'], required=False, default='get_num_objects')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['get_num_objects'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionGetSketchModePlane(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.get_sketch_mode_plane.GetSketchModePlane'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['get_sketch_mode_plane']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionGetSketchModePlane'>, 'config': {'title': 'OptionGetSketchModePlane'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionGetSketchModePlane'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionGetSketchModePlane:94028704042880', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.get_sketch_mode_plane.GetSketchModePlane'>, 'config': {'title': 'GetSketchModePlane'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.get_sketch_mode_plane.GetSketchModePlane'>>]}, 'ref': 'kittycad.models.get_sketch_mode_plane.GetSketchModePlane:94028696575888', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'origin': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'x_axis': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'y_axis': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'z_axis': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'GetSketchModePlane', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'get_sketch_mode_plane', 'schema': {'expected': ['get_sketch_mode_plane'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionGetSketchModePlane', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetSketchModePlane, required=True), 'type': FieldInfo(annotation=Literal['get_sketch_mode_plane'], required=False, default='get_sketch_mode_plane')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c380cf80,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be2eacf0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "get_sketch_mode_plane",                                             },                                             expected_py: None,                                             name: "literal['get_sketch_mode_plane']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c30edf90,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "z_axis": SerField {                                                     key_py: Py(                                                         0x00007fe0bd482280,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "y_axis": SerField {                                                     key_py: Py(                                                         0x00007fe0bd482190,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "x_axis": SerField {                                                     key_py: Py(                                                         0x00007fe0bd4820a0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "origin": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c20d78,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Recursive(                                                             DefinitionRefSerializer {                                                                 definition: "...",                                                                 retry_with_lax_check: true,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 4,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "GetSketchModePlane",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionGetSketchModePlane",     }, ), definitions=[Model(ModelSerializer { class: Py(0x5584c218d2f0), serializer: Fields(GeneralFieldsSerializer { fields: {"x": SerField { key_py: Py(0x7fe0c1c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7fe0c1c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7fe0c1c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionGetSketchModePlane", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd1800,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd1830,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "origin",                                                 lookup_key: Simple {                                                     key: "origin",                                                     py_key: Py(                                                         0x00007fe0bccd1bc0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "origin",                                                                 Py(                                                                     0x00007fe0bccd1c50,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c20d78,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "x_axis",                                                 lookup_key: Simple {                                                     key: "x_axis",                                                     py_key: Py(                                                         0x00007fe0bccd19b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "x_axis",                                                                 Py(                                                                     0x00007fe0bccd18f0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd4820a0,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "y_axis",                                                 lookup_key: Simple {                                                     key: "y_axis",                                                     py_key: Py(                                                         0x00007fe0bccd1980,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "y_axis",                                                                 Py(                                                                     0x00007fe0bccd1950,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd482190,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "z_axis",                                                 lookup_key: Simple {                                                     key: "z_axis",                                                     py_key: Py(                                                         0x00007fe0bccd18c0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "z_axis",                                                                 Py(                                                                     0x00007fe0bccd1920,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd482280,                                                 ),                                                 validator: DefinitionRef(                                                     DefinitionRefValidator {                                                         definition: "...",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "GetSketchModePlane",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c30edf90,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "GetSketchModePlane",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd1890,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd1860,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be2eacf0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "get_sketch_mode_plane": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcceb540,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be2eacf0,                                                 ),                                             ],                                         },                                         expected_repr: "'get_sketch_mode_plane'",                                         name: "literal['get_sketch_mode_plane']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['get_sketch_mode_plane']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionGetSketchModePlane",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c380cf80,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionGetSketchModePlane",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fe0c1c24420), path: LookupPath([S("x", Py(0x7fe0c1c24420))]) }, name_py: Py(0x7fe0c1c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fe0c1c24450), path: LookupPath([S("y", Py(0x7fe0c1c24450))]) }, name_py: Py(0x7fe0c1c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fe0c1c24480), path: LookupPath([S("z", Py(0x7fe0c1c24480))]) }, name_py: Py(0x7fe0c1c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x5584c218d2f0), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fe0bfae63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.get_sketch_mode_plane.GetSketchModePlane, type: Literal['get_sketch_mode_plane'] = 'get_sketch_mode_plane') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: GetSketchModePlane[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=GetSketchModePlane, required=True), 'type': FieldInfo(annotation=Literal['get_sketch_mode_plane'], required=False, default='get_sketch_mode_plane')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['get_sketch_mode_plane'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragEnd(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.handle_mouse_drag_end.HandleMouseDragEnd'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['handle_mouse_drag_end']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragEnd'>, 'config': {'title': 'OptionHandleMouseDragEnd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragEnd'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragEnd:94028703101488', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.handle_mouse_drag_end.HandleMouseDragEnd'>, 'config': {'title': 'HandleMouseDragEnd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.handle_mouse_drag_end.HandleMouseDragEnd'>>]}, 'ref': 'kittycad.models.handle_mouse_drag_end.HandleMouseDragEnd:94028696574112', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'HandleMouseDragEnd', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'handle_mouse_drag_end', 'schema': {'expected': ['handle_mouse_drag_end'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionHandleMouseDragEnd', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragEnd, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_end'], required=False, default='handle_mouse_drag_end')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3727230,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c30ed8a0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "HandleMouseDragEnd",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be34a6b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "handle_mouse_drag_end",                                             },                                             expected_py: None,                                             name: "literal['handle_mouse_drag_end']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionHandleMouseDragEnd",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionHandleMouseDragEnd", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1f2a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1f0c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "HandleMouseDragEnd",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c30ed8a0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "HandleMouseDragEnd",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1f240,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1f1e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be34a6b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "handle_mouse_drag_end": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc55440,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be34a6b0,                                                 ),                                             ],                                         },                                         expected_repr: "'handle_mouse_drag_end'",                                         name: "literal['handle_mouse_drag_end']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['handle_mouse_drag_end']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionHandleMouseDragEnd",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3727230,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionHandleMouseDragEnd",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.handle_mouse_drag_end.HandleMouseDragEnd, type: Literal['handle_mouse_drag_end'] = 'handle_mouse_drag_end') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: HandleMouseDragEnd[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragEnd, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_end'], required=False, default='handle_mouse_drag_end')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['handle_mouse_drag_end'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragMove(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.handle_mouse_drag_move.HandleMouseDragMove'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['handle_mouse_drag_move']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragMove'>, 'config': {'title': 'OptionHandleMouseDragMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragMove'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragMove:94028703092000', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.handle_mouse_drag_move.HandleMouseDragMove'>, 'config': {'title': 'HandleMouseDragMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.handle_mouse_drag_move.HandleMouseDragMove'>>]}, 'ref': 'kittycad.models.handle_mouse_drag_move.HandleMouseDragMove:94028696584928', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'HandleMouseDragMove', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'handle_mouse_drag_move', 'schema': {'expected': ['handle_mouse_drag_move'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionHandleMouseDragMove', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragMove, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_move'], required=False, default='handle_mouse_drag_move')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3724d20,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be378530,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "handle_mouse_drag_move",                                             },                                             expected_py: None,                                             name: "literal['handle_mouse_drag_move']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c30f02e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "HandleMouseDragMove",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionHandleMouseDragMove",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionHandleMouseDragMove", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1f7e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1f870,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "HandleMouseDragMove",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c30f02e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "HandleMouseDragMove",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1f840,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1f7b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be378530,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "handle_mouse_drag_move": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc54580,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be378530,                                                 ),                                             ],                                         },                                         expected_repr: "'handle_mouse_drag_move'",                                         name: "literal['handle_mouse_drag_move']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['handle_mouse_drag_move']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionHandleMouseDragMove",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3724d20,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionHandleMouseDragMove",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.handle_mouse_drag_move.HandleMouseDragMove, type: Literal['handle_mouse_drag_move'] = 'handle_mouse_drag_move') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: HandleMouseDragMove[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragMove, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_move'], required=False, default='handle_mouse_drag_move')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['handle_mouse_drag_move'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragStart(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.handle_mouse_drag_start.HandleMouseDragStart'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['handle_mouse_drag_start']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragStart'>, 'config': {'title': 'OptionHandleMouseDragStart'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragStart'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionHandleMouseDragStart:94028703082544', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.handle_mouse_drag_start.HandleMouseDragStart'>, 'config': {'title': 'HandleMouseDragStart'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.handle_mouse_drag_start.HandleMouseDragStart'>>]}, 'ref': 'kittycad.models.handle_mouse_drag_start.HandleMouseDragStart:94028696588768', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'HandleMouseDragStart', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'handle_mouse_drag_start', 'schema': {'expected': ['handle_mouse_drag_start'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionHandleMouseDragStart', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragStart, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_start'], required=False, default='handle_mouse_drag_start')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3722830,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be378630,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "handle_mouse_drag_start",                                             },                                             expected_py: None,                                             name: "literal['handle_mouse_drag_start']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c30f11e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "HandleMouseDragStart",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionHandleMouseDragStart",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionHandleMouseDragStart", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1fe70,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1ff00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "HandleMouseDragStart",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c30f11e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "HandleMouseDragStart",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1fe40,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1ff30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be378630,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "handle_mouse_drag_start": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc4f680,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be378630,                                                 ),                                             ],                                         },                                         expected_repr: "'handle_mouse_drag_start'",                                         name: "literal['handle_mouse_drag_start']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['handle_mouse_drag_start']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionHandleMouseDragStart",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3722830,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionHandleMouseDragStart",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.handle_mouse_drag_start.HandleMouseDragStart, type: Literal['handle_mouse_drag_start'] = 'handle_mouse_drag_start') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: HandleMouseDragStart[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HandleMouseDragStart, required=True), 'type': FieldInfo(annotation=Literal['handle_mouse_drag_start'], required=False, default='handle_mouse_drag_start')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['handle_mouse_drag_start'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntities(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.highlight_set_entities.HighlightSetEntities'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['highlight_set_entities']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntities'>, 'config': {'title': 'OptionHighlightSetEntities'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntities'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntities:94028702455984', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.highlight_set_entities.HighlightSetEntities'>, 'config': {'title': 'HighlightSetEntities'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.highlight_set_entities.HighlightSetEntities'>>]}, 'ref': 'kittycad.models.highlight_set_entities.HighlightSetEntities:94028696592608', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'HighlightSetEntities', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'highlight_set_entities', 'schema': {'expected': ['highlight_set_entities'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionHighlightSetEntities', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HighlightSetEntities, required=True), 'type': FieldInfo(annotation=Literal['highlight_set_entities'], required=False, default='highlight_set_entities')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36898b0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be37b1b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "highlight_set_entities",                                             },                                             expected_py: None,                                             name: "literal['highlight_set_entities']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c30f20e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "HighlightSetEntities",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionHighlightSetEntities",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionHighlightSetEntities", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdad890,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdad8c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "HighlightSetEntities",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c30f20e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "HighlightSetEntities",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdad7a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdad6e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be37b1b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "highlight_set_entities": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bde66640,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be37b1b0,                                                 ),                                             ],                                         },                                         expected_repr: "'highlight_set_entities'",                                         name: "literal['highlight_set_entities']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['highlight_set_entities']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionHighlightSetEntities",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36898b0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionHighlightSetEntities",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.highlight_set_entities.HighlightSetEntities, type: Literal['highlight_set_entities'] = 'highlight_set_entities') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: HighlightSetEntities[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HighlightSetEntities, required=True), 'type': FieldInfo(annotation=Literal['highlight_set_entities'], required=False, default='highlight_set_entities')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['highlight_set_entities'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntity(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.highlight_set_entity.HighlightSetEntity'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['highlight_set_entity']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntity'>, 'config': {'title': 'OptionHighlightSetEntity'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntity'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionHighlightSetEntity:94028703238000', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.highlight_set_entity.HighlightSetEntity'>, 'config': {'title': 'HighlightSetEntity'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.highlight_set_entity.HighlightSetEntity'>>]}, 'ref': 'kittycad.models.highlight_set_entity.HighlightSetEntity:94028696596064', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'sequence': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'int'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'HighlightSetEntity', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'highlight_set_entity', 'schema': {'expected': ['highlight_set_entity'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionHighlightSetEntity', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HighlightSetEntity, required=True), 'type': FieldInfo(annotation=Literal['highlight_set_entity'], required=False, default='highlight_set_entity')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3748770,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c30f2e60,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_id": SerField {                                                     key_py: Py(                                                         0x00007fe0bd34fe70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "sequence": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c21a70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Int(                                                                             IntSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "HighlightSetEntity",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be3787b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "highlight_set_entity",                                             },                                             expected_py: None,                                             name: "literal['highlight_set_entity']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionHighlightSetEntity",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionHighlightSetEntity", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1efa0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1ea30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_id",                                                 lookup_key: Simple {                                                     key: "entity_id",                                                     py_key: Py(                                                         0x00007fe0bcc71eb0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_id",                                                                 Py(                                                                     0x00007fe0bcc71e70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd34fe70,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "sequence",                                                 lookup_key: Simple {                                                     key: "sequence",                                                     py_key: Py(                                                         0x00007fe0bcc71f30,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "sequence",                                                                 Py(                                                                     0x00007fe0bcc71ef0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c21a70,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Int(                                                                     IntValidator {                                                                         strict: false,                                                                     },                                                                 ),                                                                 name: "nullable[int]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[int]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "HighlightSetEntity",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c30f2e60,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "HighlightSetEntity",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1f0f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1f150,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be3787b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "highlight_set_entity": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc71fc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be3787b0,                                                 ),                                             ],                                         },                                         expected_repr: "'highlight_set_entity'",                                         name: "literal['highlight_set_entity']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['highlight_set_entity']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionHighlightSetEntity",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3748770,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionHighlightSetEntity",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.highlight_set_entity.HighlightSetEntity, type: Literal['highlight_set_entity'] = 'highlight_set_entity') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: HighlightSetEntity[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=HighlightSetEntity, required=True), 'type': FieldInfo(annotation=Literal['highlight_set_entity'], required=False, default='highlight_set_entity')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['highlight_set_entity'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionImportFiles(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.import_files.ImportFiles'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['import_files']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionImportFiles'>, 'config': {'title': 'OptionImportFiles'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionImportFiles'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionImportFiles:94028703948944', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.import_files.ImportFiles'>, 'config': {'title': 'ImportFiles'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.import_files.ImportFiles'>>]}, 'ref': 'kittycad.models.import_files.ImportFiles:94028696688272', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'object_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'ImportFiles', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'import_files', 'schema': {'expected': ['import_files'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionImportFiles', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ImportFiles, required=True), 'type': FieldInfo(annotation=Literal['import_files'], required=False, default='import_files')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37f6090,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be3791b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "import_files",                                             },                                             expected_py: None,                                             name: "literal['import_files']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3109690,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "object_id": SerField {                                                     key_py: Py(                                                         0x00007fe0bfb46ab0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ImportFiles",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionImportFiles",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionImportFiles", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5f4b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5f240,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "object_id",                                                 lookup_key: Simple {                                                     key: "object_id",                                                     py_key: Py(                                                         0x00007fe0bccdac30,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "object_id",                                                                 Py(                                                                     0x00007fe0bccd8e70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bfb46ab0,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ImportFiles",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3109690,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "ImportFiles",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5f690,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5fe70,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be3791b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "import_files": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccbeb00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be3791b0,                                                 ),                                             ],                                         },                                         expected_repr: "'import_files'",                                         name: "literal['import_files']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['import_files']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionImportFiles",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37f6090,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionImportFiles",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.import_files.ImportFiles, type: Literal['import_files'] = 'import_files') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ImportFiles[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ImportFiles, required=True), 'type': FieldInfo(annotation=Literal['import_files'], required=False, default='import_files')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['import_files'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionImportedGeometry(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.imported_geometry.ImportedGeometry'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['imported_geometry']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionImportedGeometry'>, 'config': {'title': 'OptionImportedGeometry'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionImportedGeometry'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionImportedGeometry:94028703960160', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.imported_geometry.ImportedGeometry'>, 'config': {'title': 'ImportedGeometry'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.imported_geometry.ImportedGeometry'>>]}, 'ref': 'kittycad.models.imported_geometry.ImportedGeometry:94028696676416', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}, 'value': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'ImportedGeometry', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'imported_geometry', 'schema': {'expected': ['imported_geometry'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionImportedGeometry', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ImportedGeometry, required=True), 'type': FieldInfo(annotation=Literal['imported_geometry'], required=False, default='imported_geometry')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37f8c60,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3106840,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "id": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c1f3d0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "value": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c22a48,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ImportedGeometry",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be37aa70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "imported_geometry",                                             },                                             expected_py: None,                                             name: "literal['imported_geometry']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionImportedGeometry",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionImportedGeometry", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd0b10,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd09f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "id",                                                 lookup_key: Simple {                                                     key: "id",                                                     py_key: Py(                                                         0x00007fe0bccd0ae0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "id",                                                                 Py(                                                                     0x00007fe0bccd0b70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c1f3d0,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "value",                                                 lookup_key: Simple {                                                     key: "value",                                                     py_key: Py(                                                         0x00007fe0bccd0b40,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "value",                                                                 Py(                                                                     0x00007fe0bccd0ab0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c22a48,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ImportedGeometry",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3106840,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "ImportedGeometry",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd0150,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd0a20,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be37aa70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "imported_geometry": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcce1e40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be37aa70,                                                 ),                                             ],                                         },                                         expected_repr: "'imported_geometry'",                                         name: "literal['imported_geometry']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['imported_geometry']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionImportedGeometry",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37f8c60,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionImportedGeometry",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.imported_geometry.ImportedGeometry, type: Literal['imported_geometry'] = 'imported_geometry') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ImportedGeometry[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ImportedGeometry, required=True), 'type': FieldInfo(annotation=Literal['imported_geometry'], required=False, default='imported_geometry')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['imported_geometry'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionLoft(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.loft.Loft'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['loft']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionLoft'>, 'config': {'title': 'OptionLoft'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionLoft'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionLoft:94028703311072', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.loft.Loft'>, 'config': {'title': 'Loft'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.loft.Loft'>>]}, 'ref': 'kittycad.models.loft.Loft:94028696948160', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'solid_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'Loft', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'loft', 'schema': {'expected': ['loft'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionLoft', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Loft, required=True), 'type': FieldInfo(annotation=Literal['loft'], required=False, default='loft')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c375a4e0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3148dc0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "solid_id": SerField {                                                     key_py: Py(                                                         0x00007fe0bd20cab0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Loft",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be1e4db0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "loft",                                             },                                             expected_py: None,                                             name: "literal['loft']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionLoft",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionLoft", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdaed90,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdafcc0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "solid_id",                                                 lookup_key: Simple {                                                     key: "solid_id",                                                     py_key: Py(                                                         0x00007fe0bcc72af0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "solid_id",                                                                 Py(                                                                     0x00007fe0bcc72770,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd20cab0,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Loft",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3148dc0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Loft",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdaeb80,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdafc90,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be1e4db0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "loft": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc70fc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be1e4db0,                                                 ),                                             ],                                         },                                         expected_repr: "'loft'",                                         name: "literal['loft']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['loft']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionLoft",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c375a4e0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionLoft",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.loft.Loft, type: Literal['loft'] = 'loft') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Loft[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Loft, required=True), 'type': FieldInfo(annotation=Literal['loft'], required=False, default='loft')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['loft'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMakeAxesGizmo(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.make_axes_gizmo.MakeAxesGizmo'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['make_axes_gizmo']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMakeAxesGizmo'>, 'config': {'title': 'OptionMakeAxesGizmo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMakeAxesGizmo'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMakeAxesGizmo:94028703072800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.make_axes_gizmo.MakeAxesGizmo'>, 'config': {'title': 'MakeAxesGizmo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.make_axes_gizmo.MakeAxesGizmo'>>]}, 'ref': 'kittycad.models.make_axes_gizmo.MakeAxesGizmo:94028696967600', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'MakeAxesGizmo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'make_axes_gizmo', 'schema': {'expected': ['make_axes_gizmo'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMakeAxesGizmo', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakeAxesGizmo, required=True), 'type': FieldInfo(annotation=Literal['make_axes_gizmo'], required=False, default='make_axes_gizmo')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3720220,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c314d9b0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MakeAxesGizmo",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be46e2f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "make_axes_gizmo",                                             },                                             expected_py: None,                                             name: "literal['make_axes_gizmo']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMakeAxesGizmo",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMakeAxesGizmo", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdacb40,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdaed30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "MakeAxesGizmo",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c314d9b0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "MakeAxesGizmo",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdaf690,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdaf510,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be46e2f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "make_axes_gizmo": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdca3c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be46e2f0,                                                 ),                                             ],                                         },                                         expected_repr: "'make_axes_gizmo'",                                         name: "literal['make_axes_gizmo']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['make_axes_gizmo']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMakeAxesGizmo",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3720220,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionMakeAxesGizmo",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.make_axes_gizmo.MakeAxesGizmo, type: Literal['make_axes_gizmo'] = 'make_axes_gizmo') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MakeAxesGizmo[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakeAxesGizmo, required=True), 'type': FieldInfo(annotation=Literal['make_axes_gizmo'], required=False, default='make_axes_gizmo')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['make_axes_gizmo'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMakeOffsetPath(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.make_offset_path.MakeOffsetPath'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['make_offset_path']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMakeOffsetPath'>, 'config': {'title': 'OptionMakeOffsetPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMakeOffsetPath'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMakeOffsetPath:94028703566208', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.make_offset_path.MakeOffsetPath'>, 'config': {'title': 'MakeOffsetPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.make_offset_path.MakeOffsetPath'>>]}, 'ref': 'kittycad.models.make_offset_path.MakeOffsetPath:94028696952464', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'MakeOffsetPath', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'make_offset_path', 'schema': {'expected': ['make_offset_path'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMakeOffsetPath', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakeOffsetPath, required=True), 'type': FieldInfo(annotation=Literal['make_offset_path'], required=False, default='make_offset_path')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3798980,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3149e90,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007fe0bd34de30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MakeOffsetPath",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be46e330,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "make_offset_path",                                             },                                             expected_py: None,                                             name: "literal['make_offset_path']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMakeOffsetPath",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMakeOffsetPath", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5dd40,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5cd50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007fe0bcc9a3f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007fe0bcc99f70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd34de30,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "MakeOffsetPath",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3149e90,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "MakeOffsetPath",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5dd70,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5dda0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be46e330,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "make_offset_path": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc8cec0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be46e330,                                                 ),                                             ],                                         },                                         expected_repr: "'make_offset_path'",                                         name: "literal['make_offset_path']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['make_offset_path']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMakeOffsetPath",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3798980,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionMakeOffsetPath",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.make_offset_path.MakeOffsetPath, type: Literal['make_offset_path'] = 'make_offset_path') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MakeOffsetPath[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakeOffsetPath, required=True), 'type': FieldInfo(annotation=Literal['make_offset_path'], required=False, default='make_offset_path')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['make_offset_path'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMakePlane(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.make_plane.MakePlane'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['make_plane']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMakePlane'>, 'config': {'title': 'OptionMakePlane'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMakePlane'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMakePlane:94028702879360', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.make_plane.MakePlane'>, 'config': {'title': 'MakePlane'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.make_plane.MakePlane'>>]}, 'ref': 'kittycad.models.make_plane.MakePlane:94028696957312', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'MakePlane', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'make_plane', 'schema': {'expected': ['make_plane'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMakePlane', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakePlane, required=True), 'type': FieldInfo(annotation=Literal['make_plane'], required=False, default='make_plane')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36f0e80,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be3116f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "make_plane",                                             },                                             expected_py: None,                                             name: "literal['make_plane']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c314b180,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MakePlane",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMakePlane",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMakePlane", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1ed60,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1edf0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "MakePlane",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c314b180,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "MakePlane",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1edc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1ed30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be3116f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "make_plane": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc37f80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be3116f0,                                                 ),                                             ],                                         },                                         expected_repr: "'make_plane'",                                         name: "literal['make_plane']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['make_plane']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMakePlane",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36f0e80,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionMakePlane",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.make_plane.MakePlane, type: Literal['make_plane'] = 'make_plane') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MakePlane[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MakePlane, required=True), 'type': FieldInfo(annotation=Literal['make_plane'], required=False, default='make_plane')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['make_plane'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMass(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.mass.Mass'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['mass']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMass'>, 'config': {'title': 'OptionMass'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMass'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMass:94028703973024', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.mass.Mass'>, 'config': {'title': 'Mass'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.mass.Mass'>>]}, 'ref': 'kittycad.models.mass.Mass:94028696961728', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'mass': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'output_unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitMass'>, 'members': [UnitMass.G, UnitMass.KG, UnitMass.LB], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_mass.UnitMass:94028694381520', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}}, 'model_name': 'Mass', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'mass', 'schema': {'expected': ['mass'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMass', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Mass, required=True), 'type': FieldInfo(annotation=Literal['mass'], required=False, default='mass')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37fbea0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c314c2c0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "output_unit": SerField {                                                     key_py: Py(                                                         0x00007fe0bd597f70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x00005584c2ed63d0,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "mass": SerField {                                                     key_py: Py(                                                         0x00007fe0be1e5110,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Mass",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be1e5110,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "mass",                                             },                                             expected_py: None,                                             name: "literal['mass']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMass",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMass", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd0660,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd0570,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "mass",                                                 lookup_key: Simple {                                                     key: "mass",                                                     py_key: Py(                                                         0x00007fe0bccd0510,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "mass",                                                                 Py(                                                                     0x00007fe0bccd0480,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0be1e5110,                                                 ),                                                 validator: Float(                                                     FloatValidator {                                                         strict: false,                                                         allow_inf_nan: true,                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "output_unit",                                                 lookup_key: Simple {                                                     key: "output_unit",                                                     py_key: Py(                                                         0x00007fe0bcce30b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "output_unit",                                                                 Py(                                                                     0x00007fe0bcce3070,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd597f70,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x00005584c2ed63d0,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "g": 0,                                                                     "lb": 2,                                                                     "kg": 1,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007fe0bcce3000,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007fe0bd4c64b0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c6510,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c6570,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'g', 'kg' or 'lb'",                                                         strict: false,                                                         class_repr: "UnitMass",                                                         name: "str-enum[UnitMass]",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Mass",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c314c2c0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Mass",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd0450,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd0900,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be1e5110,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "mass": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcce3100,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be1e5110,                                                 ),                                             ],                                         },                                         expected_repr: "'mass'",                                         name: "literal['mass']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['mass']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMass",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37fbea0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionMass",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.mass.Mass, type: Literal['mass'] = 'mass') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Mass[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Mass, required=True), 'type': FieldInfo(annotation=Literal['mass'], required=False, default='mass')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['mass'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMouseClick(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.mouse_click.MouseClick'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['mouse_click']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMouseClick'>, 'config': {'title': 'OptionMouseClick'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMouseClick'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMouseClick:94028703717648', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.mouse_click.MouseClick'>, 'config': {'title': 'MouseClick'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.mouse_click.MouseClick'>>]}, 'ref': 'kittycad.models.mouse_click.MouseClick:94028702268720', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entities_modified': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}, 'entities_selected': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'MouseClick', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'mouse_click', 'schema': {'expected': ['mouse_click'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMouseClick', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MouseClick, required=True), 'type': FieldInfo(annotation=Literal['mouse_click'], required=False, default='mouse_click')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37bd910,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c365bd30,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entities_selected": SerField {                                                     key_py: Py(                                                         0x00007fe0bce9a3f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "entities_modified": SerField {                                                     key_py: Py(                                                         0x00007fe0bce993f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MouseClick",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bddbb6f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "mouse_click",                                             },                                             expected_py: None,                                             name: "literal['mouse_click']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMouseClick",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMouseClick", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5fb10,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5fb40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entities_modified",                                                 lookup_key: Simple {                                                     key: "entities_modified",                                                     py_key: Py(                                                         0x00007fe0bccbd0f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entities_modified",                                                                 Py(                                                                     0x00007fe0bccbd0b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bce993f0,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "entities_selected",                                                 lookup_key: Simple {                                                     key: "entities_selected",                                                     py_key: Py(                                                         0x00007fe0bccbd170,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entities_selected",                                                                 Py(                                                                     0x00007fe0bccbd130,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bce9a3f0,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "MouseClick",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c365bd30,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "MouseClick",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5fb70,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5fba0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bddbb6f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "mouse_click": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccbd200,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bddbb6f0,                                                 ),                                             ],                                         },                                         expected_repr: "'mouse_click'",                                         name: "literal['mouse_click']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['mouse_click']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMouseClick",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37bd910,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionMouseClick",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.mouse_click.MouseClick, type: Literal['mouse_click'] = 'mouse_click') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MouseClick[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MouseClick, required=True), 'type': FieldInfo(annotation=Literal['mouse_click'], required=False, default='mouse_click')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['mouse_click'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMouseMove(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.mouse_move.MouseMove'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['mouse_move']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMouseMove'>, 'config': {'title': 'OptionMouseMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMouseMove'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMouseMove:94028702907360', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.mouse_move.MouseMove'>, 'config': {'title': 'MouseMove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.mouse_move.MouseMove'>>]}, 'ref': 'kittycad.models.mouse_move.MouseMove:94028702279952', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'MouseMove', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'mouse_move', 'schema': {'expected': ['mouse_move'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMouseMove', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MouseMove, required=True), 'type': FieldInfo(annotation=Literal['mouse_move'], required=False, default='mouse_move')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36f7be0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bddbb770,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "mouse_move",                                             },                                             expected_py: None,                                             name: "literal['mouse_move']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c365e910,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MouseMove",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMouseMove",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMouseMove", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdad3b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdafd20,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "MouseMove",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c365e910,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "MouseMove",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdac750,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdafcf0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bddbb770,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "mouse_move": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdc0700,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bddbb770,                                                 ),                                             ],                                         },                                         expected_repr: "'mouse_move'",                                         name: "literal['mouse_move']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['mouse_move']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMouseMove",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36f7be0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionMouseMove",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.mouse_move.MouseMove, type: Literal['mouse_move'] = 'mouse_move') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MouseMove[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MouseMove, required=True), 'type': FieldInfo(annotation=Literal['mouse_move'], required=False, default='mouse_move')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['mouse_move'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionMovePathPen(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.move_path_pen.MovePathPen'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['move_path_pen']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionMovePathPen'>, 'config': {'title': 'OptionMovePathPen'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionMovePathPen'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionMovePathPen:94028702672176', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.move_path_pen.MovePathPen'>, 'config': {'title': 'MovePathPen'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.move_path_pen.MovePathPen'>>]}, 'ref': 'kittycad.models.move_path_pen.MovePathPen:94028702275792', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'MovePathPen', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'move_path_pen', 'schema': {'expected': ['move_path_pen'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionMovePathPen', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MovePathPen, required=True), 'type': FieldInfo(annotation=Literal['move_path_pen'], required=False, default='move_path_pen')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36be530,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bddbb7f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "move_path_pen",                                             },                                             expected_py: None,                                             name: "literal['move_path_pen']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c365d8d0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "MovePathPen",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionMovePathPen",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionMovePathPen", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc44690,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc446c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "MovePathPen",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c365d8d0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "MovePathPen",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc446f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc44720,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bddbb7f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "move_path_pen": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde5ec0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bddbb7f0,                                                 ),                                             ],                                         },                                         expected_repr: "'move_path_pen'",                                         name: "literal['move_path_pen']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['move_path_pen']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionMovePathPen",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36be530,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionMovePathPen",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.move_path_pen.MovePathPen, type: Literal['move_path_pen'] = 'move_path_pen') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: MovePathPen[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=MovePathPen, required=True), 'type': FieldInfo(annotation=Literal['move_path_pen'], required=False, default='move_path_pen')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['move_path_pen'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionNewAnnotation(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.new_annotation.NewAnnotation'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['new_annotation']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionNewAnnotation'>, 'config': {'title': 'OptionNewAnnotation'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionNewAnnotation'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionNewAnnotation:94028702465648', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.new_annotation.NewAnnotation'>, 'config': {'title': 'NewAnnotation'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.new_annotation.NewAnnotation'>>]}, 'ref': 'kittycad.models.new_annotation.NewAnnotation:94028702287664', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'NewAnnotation', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'new_annotation', 'schema': {'expected': ['new_annotation'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionNewAnnotation', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=NewAnnotation, required=True), 'type': FieldInfo(annotation=Literal['new_annotation'], required=False, default='new_annotation')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c368be70,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bddbb870,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "new_annotation",                                             },                                             expected_py: None,                                             name: "literal['new_annotation']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3660730,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "NewAnnotation",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionNewAnnotation",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionNewAnnotation", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45bc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc45c50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "NewAnnotation",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3660730,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "NewAnnotation",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc45d10,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc45bf0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bddbb870,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "new_annotation": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde0d00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bddbb870,                                                 ),                                             ],                                         },                                         expected_repr: "'new_annotation'",                                         name: "literal['new_annotation']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['new_annotation']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionNewAnnotation",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c368be70,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionNewAnnotation",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.new_annotation.NewAnnotation, type: Literal['new_annotation'] = 'new_annotation') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: NewAnnotation[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=NewAnnotation, required=True), 'type': FieldInfo(annotation=Literal['new_annotation'], required=False, default='new_annotation')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['new_annotation'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionObjectBringToFront(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.object_bring_to_front.ObjectBringToFront'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['object_bring_to_front']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectBringToFront'>, 'config': {'title': 'OptionObjectBringToFront'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectBringToFront'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionObjectBringToFront:94028702814208', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.object_bring_to_front.ObjectBringToFront'>, 'config': {'title': 'ObjectBringToFront'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.object_bring_to_front.ObjectBringToFront'>>]}, 'ref': 'kittycad.models.object_bring_to_front.ObjectBringToFront:94028702303168', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'ObjectBringToFront', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'object_bring_to_front', 'schema': {'expected': ['object_bring_to_front'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionObjectBringToFront', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectBringToFront, required=True), 'type': FieldInfo(annotation=Literal['object_bring_to_front'], required=False, default='object_bring_to_front')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36e1000,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bddbbaf0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "object_bring_to_front",                                             },                                             expected_py: None,                                             name: "literal['object_bring_to_front']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36643c0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ObjectBringToFront",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionObjectBringToFront",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionObjectBringToFront", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45ec0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc45ef0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "ObjectBringToFront",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36643c0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "ObjectBringToFront",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc45f20,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc45f50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bddbbaf0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "object_bring_to_front": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdc8300,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bddbbaf0,                                                 ),                                             ],                                         },                                         expected_repr: "'object_bring_to_front'",                                         name: "literal['object_bring_to_front']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['object_bring_to_front']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionObjectBringToFront",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36e1000,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionObjectBringToFront",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.object_bring_to_front.ObjectBringToFront, type: Literal['object_bring_to_front'] = 'object_bring_to_front') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ObjectBringToFront[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectBringToFront, required=True), 'type': FieldInfo(annotation=Literal['object_bring_to_front'], required=False, default='object_bring_to_front')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['object_bring_to_front'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionObjectSetMaterialParamsPbr(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.object_set_material_params_pbr.ObjectSetMaterialParamsPbr'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['object_set_material_params_pbr']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectSetMaterialParamsPbr'>, 'config': {'title': 'OptionObjectSetMaterialParamsPbr'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectSetMaterialParamsPbr'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionObjectSetMaterialParamsPbr:94028702823200', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.object_set_material_params_pbr.ObjectSetMaterialParamsPbr'>, 'config': {'title': 'ObjectSetMaterialParamsPbr'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.object_set_material_params_pbr.ObjectSetMaterialParamsPbr'>>]}, 'ref': 'kittycad.models.object_set_material_params_pbr.ObjectSetMaterialParamsPbr:94028702308336', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'ObjectSetMaterialParamsPbr', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'object_set_material_params_pbr', 'schema': {'expected': ['object_set_material_params_pbr'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionObjectSetMaterialParamsPbr', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectSetMaterialParamsPbr, required=True), 'type': FieldInfo(annotation=Literal['object_set_material_params_pbr'], required=False, default='object_set_material_params_pbr')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36e3320,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde08580,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "object_set_material_params_pbr",                                             },                                             expected_py: None,                                             name: "literal['object_set_material_params_pbr']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36657f0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ObjectSetMaterialParamsPbr",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionObjectSetMaterialParamsPbr",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionObjectSetMaterialParamsPbr", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1eac0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1eaf0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "ObjectSetMaterialParamsPbr",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36657f0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "ObjectSetMaterialParamsPbr",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1eb20,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1eb50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde08580,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "object_set_material_params_pbr": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdc3440,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde08580,                                                 ),                                             ],                                         },                                         expected_repr: "'object_set_material_params_pbr'",                                         name: "literal['object_set_material_params_pbr']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['object_set_material_params_pbr']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionObjectSetMaterialParamsPbr",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36e3320,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionObjectSetMaterialParamsPbr",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.object_set_material_params_pbr.ObjectSetMaterialParamsPbr, type: Literal['object_set_material_params_pbr'] = 'object_set_material_params_pbr') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ObjectSetMaterialParamsPbr[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectSetMaterialParamsPbr, required=True), 'type': FieldInfo(annotation=Literal['object_set_material_params_pbr'], required=False, default='object_set_material_params_pbr')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['object_set_material_params_pbr'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionObjectVisible(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.object_visible.ObjectVisible'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['object_visible']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectVisible'>, 'config': {'title': 'OptionObjectVisible'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionObjectVisible'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionObjectVisible:94028702804592', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.object_visible.ObjectVisible'>, 'config': {'title': 'ObjectVisible'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.object_visible.ObjectVisible'>>]}, 'ref': 'kittycad.models.object_visible.ObjectVisible:94028702311344', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'ObjectVisible', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'object_visible', 'schema': {'expected': ['object_visible'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionObjectVisible', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectVisible, required=True), 'type': FieldInfo(annotation=Literal['object_visible'], required=False, default='object_visible')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36dea70,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36663b0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ObjectVisible",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bddbbc30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "object_visible",                                             },                                             expected_py: None,                                             name: "literal['object_visible']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionObjectVisible",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionObjectVisible", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45050,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44f00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "ObjectVisible",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36663b0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "ObjectVisible",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc45020,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc45080,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bddbbc30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "object_visible": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdc9080,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bddbbc30,                                                 ),                                             ],                                         },                                         expected_repr: "'object_visible'",                                         name: "literal['object_visible']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['object_visible']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionObjectVisible",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36dea70,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionObjectVisible",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.object_visible.ObjectVisible, type: Literal['object_visible'] = 'object_visible') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ObjectVisible[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ObjectVisible, required=True), 'type': FieldInfo(annotation=Literal['object_visible'], required=False, default='object_visible')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['object_visible'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuid(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_get_curve_uuid.PathGetCurveUuid'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_get_curve_uuid']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuid'>, 'config': {'title': 'OptionPathGetCurveUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuid'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuid:94028703794784', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_get_curve_uuid.PathGetCurveUuid'>, 'config': {'title': 'PathGetCurveUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_get_curve_uuid.PathGetCurveUuid'>>]}, 'ref': 'kittycad.models.path_get_curve_uuid.PathGetCurveUuid:94028702697168', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'curve_id': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'PathGetCurveUuid', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_get_curve_uuid', 'schema': {'expected': ['path_get_curve_uuid'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathGetCurveUuid', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetCurveUuid, required=True), 'type': FieldInfo(annotation=Literal['path_get_curve_uuid'], required=False, default='path_get_curve_uuid')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37d0660,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36c46d0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "curve_id": SerField {                                                     key_py: Py(                                                         0x00007fe0bd1625f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathGetCurveUuid",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde184f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_get_curve_uuid",                                             },                                             expected_py: None,                                             name: "literal['path_get_curve_uuid']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathGetCurveUuid",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathGetCurveUuid", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5ff90,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5ffc0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "curve_id",                                                 lookup_key: Simple {                                                     key: "curve_id",                                                     py_key: Py(                                                         0x00007fe0bccc96b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "curve_id",                                                                 Py(                                                                     0x00007fe0bccc9670,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd1625f0,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathGetCurveUuid",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36c46d0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "PathGetCurveUuid",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd0030,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd0060,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde184f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_get_curve_uuid": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccc9700,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde184f0,                                                 ),                                             ],                                         },                                         expected_repr: "'path_get_curve_uuid'",                                         name: "literal['path_get_curve_uuid']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_get_curve_uuid']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathGetCurveUuid",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37d0660,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionPathGetCurveUuid",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_get_curve_uuid.PathGetCurveUuid, type: Literal['path_get_curve_uuid'] = 'path_get_curve_uuid') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathGetCurveUuid[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetCurveUuid, required=True), 'type': FieldInfo(annotation=Literal['path_get_curve_uuid'], required=False, default='path_get_curve_uuid')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_get_curve_uuid'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuidsForVertices(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_get_curve_uuids_for_vertices.PathGetCurveUuidsForVertices'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_get_curve_uuids_for_vertices']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuidsForVertices'>, 'config': {'title': 'OptionPathGetCurveUuidsForVertices'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuidsForVertices'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathGetCurveUuidsForVertices:94028703782544', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_get_curve_uuids_for_vertices.PathGetCurveUuidsForVertices'>, 'config': {'title': 'PathGetCurveUuidsForVertices'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_get_curve_uuids_for_vertices.PathGetCurveUuidsForVertices'>>]}, 'ref': 'kittycad.models.path_get_curve_uuids_for_vertices.PathGetCurveUuidsForVertices:94028702720992', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'curve_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'PathGetCurveUuidsForVertices', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_get_curve_uuids_for_vertices', 'schema': {'expected': ['path_get_curve_uuids_for_vertices'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathGetCurveUuidsForVertices', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetCurveUuidsForVertices, required=True), 'type': FieldInfo(annotation=Literal['path_get_curve_uuids_for_vertices'], required=False, default='path_get_curve_uuids_for_vertices')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37cd690,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36ca3e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "curve_ids": SerField {                                                     key_py: Py(                                                         0x00007fe0bcdf4030,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathGetCurveUuidsForVertices",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde081c0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_get_curve_uuids_for_vertices",                                             },                                             expected_py: None,                                             name: "literal['path_get_curve_uuids_for_vertices']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathGetCurveUuidsForVertices",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathGetCurveUuidsForVertices", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5f1e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5f480,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "curve_ids",                                                 lookup_key: Simple {                                                     key: "curve_ids",                                                     py_key: Py(                                                         0x00007fe0bccc85b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "curve_ids",                                                                 Py(                                                                     0x00007fe0bccc8570,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bcdf4030,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathGetCurveUuidsForVertices",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36ca3e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "PathGetCurveUuidsForVertices",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5f510,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5f270,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde081c0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_get_curve_uuids_for_vertices": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccc8600,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde081c0,                                                 ),                                             ],                                         },                                         expected_repr: "'path_get_curve_uuids_for_vertices'",                                         name: "literal['path_get_curve_uuids_for_vertices']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_get_curve_uuids_for_vertices']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathGetCurveUuidsForVertices",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37cd690,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionPathGetCurveUuidsForVertices",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_get_curve_uuids_for_vertices.PathGetCurveUuidsForVertices, type: Literal['path_get_curve_uuids_for_vertices'] = 'path_get_curve_uuids_for_vertices') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathGetCurveUuidsForVertices[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetCurveUuidsForVertices, required=True), 'type': FieldInfo(annotation=Literal['path_get_curve_uuids_for_vertices'], required=False, default='path_get_curve_uuids_for_vertices')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_get_curve_uuids_for_vertices'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathGetInfo(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_get_info.PathGetInfo'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_get_info']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetInfo'>, 'config': {'title': 'OptionPathGetInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetInfo'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathGetInfo:94028703746416', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_get_info.PathGetInfo'>, 'config': {'title': 'PathGetInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_get_info.PathGetInfo'>>]}, 'ref': 'kittycad.models.path_get_info.PathGetInfo:94028702739648', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'segments': {'metadata': {}, 'schema': {'items_schema': {'cls': <class 'kittycad.models.path_segment_info.PathSegmentInfo'>, 'config': {'title': 'PathSegmentInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_segment_info.PathSegmentInfo'>>]}, 'ref': 'kittycad.models.path_segment_info.PathSegmentInfo:94028702702912', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'command': {'metadata': {}, 'schema': {'cls': <enum 'PathCommand'>, 'members': [PathCommand.MOVE_TO, PathCommand.LINE_TO, PathCommand.BEZ_CURVE_TO, PathCommand.NURBS_CURVE_TO, PathCommand.ADD_ARC], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.path_command.PathCommand:94028702700352', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'command_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'function': {'function': <class 'kittycad.models.modeling_cmd_id.ModelingCmdId'>, 'type': 'no-info'}, 'schema': {'type': 'str'}, 'type': 'function-after'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'relative': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}}, 'model_name': 'PathSegmentInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'PathGetInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_get_info', 'schema': {'expected': ['path_get_info'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathGetInfo', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetInfo, required=True), 'type': FieldInfo(annotation=Literal['path_get_info'], required=False, default='path_get_info')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37c4970,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde185f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_get_info",                                             },                                             expected_py: None,                                             name: "literal['path_get_info']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36cecc0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "segments": SerField {                                                     key_py: Py(                                                         0x00007fe0c0a4e570,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Model(                                                                     ModelSerializer {                                                                         class: Py(                                                                             0x00005584c36c5d40,                                                                         ),                                                                         serializer: Fields(                                                                             GeneralFieldsSerializer {                                                                                 fields: {                                                                                     "command_id": SerField {                                                                                         key_py: Py(                                                                                             0x00007fe0bcdf5370,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             WithDefault(                                                                                                 WithDefaultSerializer {                                                                                                     default: Default(                                                                                                         Py(                                                                                                             0x00007fe0c1b2d100,                                                                                                         ),                                                                                                     ),                                                                                                     serializer: Nullable(                                                                                                         NullableSerializer {                                                                                                             serializer: Str(                                                                                                                 StrSerializer,                                                                                                             ),                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "relative": SerField {                                                                                         key_py: Py(                                                                                             0x00007fe0bfb81330,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Bool(                                                                                                 BoolSerializer,                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "command": SerField {                                                                                         key_py: Py(                                                                                             0x00007fe0c1c1dd28,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Enum(                                                                                                 EnumSerializer {                                                                                                     class: Py(                                                                                                         0x00005584c36c5340,                                                                                                     ),                                                                                                     serializer: Some(                                                                                                         Str(                                                                                                             StrSerializer,                                                                                                         ),                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                 },                                                                                 computed_fields: Some(                                                                                     ComputedFields(                                                                                         [],                                                                                     ),                                                                                 ),                                                                                 mode: SimpleDict,                                                                                 extra_serializer: None,                                                                                 filter: SchemaFilter {                                                                                     include: None,                                                                                     exclude: None,                                                                                 },                                                                                 required_fields: 3,                                                                             },                                                                         ),                                                                         has_extra: false,                                                                         root_model: false,                                                                         name: "PathSegmentInfo",                                                                     },                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[PathSegmentInfo]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathGetInfo",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathGetInfo",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathGetInfo", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5cde0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5ddd0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "segments",                                                 lookup_key: Simple {                                                     key: "segments",                                                     py_key: Py(                                                         0x00007fe0bccbc470,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "segments",                                                                 Py(                                                                     0x00007fe0bccbdd70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c0a4e570,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Model(                                                                 ModelValidator {                                                                     revalidate: Never,                                                                     validator: ModelFields(                                                                         ModelFieldsValidator {                                                                             fields: [                                                                                 Field {                                                                                     name: "command",                                                                                     lookup_key: Simple {                                                                                         key: "command",                                                                                         py_key: Py(                                                                                             0x00007fe0bcc5f8a0,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "command",                                                                                                     Py(                                                                                                         0x00007fe0bcc5dec0,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007fe0c1c1dd28,                                                                                     ),                                                                                     validator: StrEnum(                                                                                         EnumValidator {                                                                                             phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                                                             class: Py(                                                                                                 0x00005584c36c5340,                                                                                             ),                                                                                             lookup: LiteralLookup {                                                                                                 expected_bool: None,                                                                                                 expected_int: None,                                                                                                 expected_str: Some(                                                                                                     {                                                                                                         "bez_curve_to": 2,                                                                                                         "add_arc": 4,                                                                                                         "move_to": 0,                                                                                                         "line_to": 1,                                                                                                         "nurbs_curve_to": 3,                                                                                                     },                                                                                                 ),                                                                                                 expected_py_dict: None,                                                                                                 expected_py_values: None,                                                                                                 expected_py_primitives: Some(                                                                                                     Py(                                                                                                         0x00007fe0bccbc9c0,                                                                                                     ),                                                                                                 ),                                                                                                 values: [                                                                                                     Py(                                                                                                         0x00007fe0bd0ce690,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007fe0bd0ce6f0,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007fe0bd0ce750,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007fe0bd0ce7b0,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007fe0bd0ce810,                                                                                                     ),                                                                                                 ],                                                                                             },                                                                                             missing: None,                                                                                             expected_repr: "'move_to', 'line_to', 'bez_curve_to', 'nurbs_curve_to' or 'add_arc'",                                                                                             strict: false,                                                                                             class_repr: "PathCommand",                                                                                             name: "str-enum[PathCommand]",                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "command_id",                                                                                     lookup_key: Simple {                                                                                         key: "command_id",                                                                                         py_key: Py(                                                                                             0x00007fe0bccbc8f0,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "command_id",                                                                                                     Py(                                                                                                         0x00007fe0bccbc870,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007fe0bcdf5370,                                                                                     ),                                                                                     validator: WithDefault(                                                                                         WithDefaultValidator {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             on_error: Raise,                                                                                             validator: Nullable(                                                                                                 NullableValidator {                                                                                                     validator: FunctionAfter(                                                                                                         FunctionAfterValidator {                                                                                                             validator: Str(                                                                                                                 StrValidator {                                                                                                                     strict: false,                                                                                                                     coerce_numbers_to_str: false,                                                                                                                 },                                                                                                             ),                                                                                                             func: Py(                                                                                                                 0x00005584c31a6ad0,                                                                                                             ),                                                                                                             config: Py(                                                                                                                 0x00007fe0bccbd980,                                                                                                             ),                                                                                                             name: "function-after[ModelingCmdId(), str]",                                                                                                             field_name: None,                                                                                                             info_arg: false,                                                                                                         },                                                                                                     ),                                                                                                     name: "nullable[function-after[ModelingCmdId(), str]]",                                                                                                 },                                                                                             ),                                                                                             validate_default: false,                                                                                             copy_default: false,                                                                                             name: "default[nullable[function-after[ModelingCmdId(), str]]]",                                                                                             undefined: Py(                                                                                                 0x00007fe0bfae63d0,                                                                                             ),                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "relative",                                                                                     lookup_key: Simple {                                                                                         key: "relative",                                                                                         py_key: Py(                                                                                             0x00007fe0bccbc970,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "relative",                                                                                                     Py(                                                                                                         0x00007fe0bccbc7f0,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007fe0bfb81330,                                                                                     ),                                                                                     validator: Bool(                                                                                         BoolValidator {                                                                                             strict: false,                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                             ],                                                                             model_name: "PathSegmentInfo",                                                                             extra_behavior: Ignore,                                                                             extras_validator: None,                                                                             strict: false,                                                                             from_attributes: false,                                                                             loc_by_alias: true,                                                                         },                                                                     ),                                                                     class: Py(                                                                         0x00005584c36c5d40,                                                                     ),                                                                     generic_origin: None,                                                                     post_init: None,                                                                     frozen: false,                                                                     custom_init: false,                                                                     root_model: false,                                                                     undefined: Py(                                                                         0x00007fe0bfae63d0,                                                                     ),                                                                     name: "PathSegmentInfo",                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathGetInfo",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36cecc0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "PathGetInfo",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5dce0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5d020,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde185f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_get_info": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccbddc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde185f0,                                                 ),                                             ],                                         },                                         expected_repr: "'path_get_info'",                                         name: "literal['path_get_info']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_get_info']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathGetInfo",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37c4970,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionPathGetInfo",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_get_info.PathGetInfo, type: Literal['path_get_info'] = 'path_get_info') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathGetInfo[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetInfo, required=True), 'type': FieldInfo(annotation=Literal['path_get_info'], required=False, default='path_get_info')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_get_info'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathGetSketchTargetUuid(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_get_sketch_target_uuid.PathGetSketchTargetUuid'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_get_sketch_target_uuid']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetSketchTargetUuid'>, 'config': {'title': 'OptionPathGetSketchTargetUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetSketchTargetUuid'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathGetSketchTargetUuid:94028703818288', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_get_sketch_target_uuid.PathGetSketchTargetUuid'>, 'config': {'title': 'PathGetSketchTargetUuid'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_get_sketch_target_uuid.PathGetSketchTargetUuid'>>]}, 'ref': 'kittycad.models.path_get_sketch_target_uuid.PathGetSketchTargetUuid:94028702758560', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'target_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'PathGetSketchTargetUuid', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_get_sketch_target_uuid', 'schema': {'expected': ['path_get_sketch_target_uuid'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathGetSketchTargetUuid', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetSketchTargetUuid, required=True), 'type': FieldInfo(annotation=Literal['path_get_sketch_target_uuid'], required=False, default='path_get_sketch_target_uuid')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37d6230,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36d36a0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "target_id": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c0f620,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathGetSketchTargetUuid",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde09c00,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_get_sketch_target_uuid",                                             },                                             expected_py: None,                                             name: "literal['path_get_sketch_target_uuid']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathGetSketchTargetUuid",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathGetSketchTargetUuid", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd0750,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd0780,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "target_id",                                                 lookup_key: Simple {                                                     key: "target_id",                                                     py_key: Py(                                                         0x00007fe0bd1ce830,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "target_id",                                                                 Py(                                                                     0x00007fe0bcccb9f0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c0f620,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathGetSketchTargetUuid",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36d36a0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "PathGetSketchTargetUuid",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd07b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd07e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde09c00,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_get_sketch_target_uuid": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcccba40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde09c00,                                                 ),                                             ],                                         },                                         expected_repr: "'path_get_sketch_target_uuid'",                                         name: "literal['path_get_sketch_target_uuid']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_get_sketch_target_uuid']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathGetSketchTargetUuid",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37d6230,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionPathGetSketchTargetUuid",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_get_sketch_target_uuid.PathGetSketchTargetUuid, type: Literal['path_get_sketch_target_uuid'] = 'path_get_sketch_target_uuid') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathGetSketchTargetUuid[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetSketchTargetUuid, required=True), 'type': FieldInfo(annotation=Literal['path_get_sketch_target_uuid'], required=False, default='path_get_sketch_target_uuid')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_get_sketch_target_uuid'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathGetVertexUuids(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_get_vertex_uuids.PathGetVertexUuids'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_get_vertex_uuids']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetVertexUuids'>, 'config': {'title': 'OptionPathGetVertexUuids'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathGetVertexUuids'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathGetVertexUuids:94028703806048', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_get_vertex_uuids.PathGetVertexUuids'>, 'config': {'title': 'PathGetVertexUuids'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_get_vertex_uuids.PathGetVertexUuids'>>]}, 'ref': 'kittycad.models.path_get_vertex_uuids.PathGetVertexUuids:94028702968768', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'vertex_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'PathGetVertexUuids', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_get_vertex_uuids', 'schema': {'expected': ['path_get_vertex_uuids'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathGetVertexUuids', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetVertexUuids, required=True), 'type': FieldInfo(annotation=Literal['path_get_vertex_uuids'], required=False, default='path_get_vertex_uuids')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37d3260,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3706bc0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "vertex_ids": SerField {                                                     key_py: Py(                                                         0x00007fe0bd0c0cf0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathGetVertexUuids",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde18770,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_get_vertex_uuids",                                             },                                             expected_py: None,                                             name: "literal['path_get_vertex_uuids']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathGetVertexUuids",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathGetVertexUuids", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd0390,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd03c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "vertex_ids",                                                 lookup_key: Simple {                                                     key: "vertex_ids",                                                     py_key: Py(                                                         0x00007fe0bccca7b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "vertex_ids",                                                                 Py(                                                                     0x00007fe0bccca770,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd0c0cf0,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathGetVertexUuids",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3706bc0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "PathGetVertexUuids",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd03f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd0420,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde18770,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_get_vertex_uuids": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccca800,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde18770,                                                 ),                                             ],                                         },                                         expected_repr: "'path_get_vertex_uuids'",                                         name: "literal['path_get_vertex_uuids']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_get_vertex_uuids']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathGetVertexUuids",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37d3260,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionPathGetVertexUuids",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_get_vertex_uuids.PathGetVertexUuids, type: Literal['path_get_vertex_uuids'] = 'path_get_vertex_uuids') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathGetVertexUuids[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathGetVertexUuids, required=True), 'type': FieldInfo(annotation=Literal['path_get_vertex_uuids'], required=False, default='path_get_vertex_uuids')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_get_vertex_uuids'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPathSegmentInfo(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.path_segment_info.PathSegmentInfo'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['path_segment_info']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPathSegmentInfo'>, 'config': {'title': 'OptionPathSegmentInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPathSegmentInfo'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPathSegmentInfo:94028703766544', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.path_segment_info.PathSegmentInfo'>, 'config': {'title': 'PathSegmentInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_segment_info.PathSegmentInfo'>>]}, 'ref': 'kittycad.models.path_segment_info.PathSegmentInfo:94028702702912', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'command': {'metadata': {}, 'schema': {'cls': <enum 'PathCommand'>, 'members': [PathCommand.MOVE_TO, PathCommand.LINE_TO, PathCommand.BEZ_CURVE_TO, PathCommand.NURBS_CURVE_TO, PathCommand.ADD_ARC], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.path_command.PathCommand:94028702700352', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'command_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'function': {'function': <class 'kittycad.models.modeling_cmd_id.ModelingCmdId'>, 'type': 'no-info'}, 'schema': {'type': 'str'}, 'type': 'function-after'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'relative': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}}, 'model_name': 'PathSegmentInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'path_segment_info', 'schema': {'expected': ['path_segment_info'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPathSegmentInfo', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathSegmentInfo, required=True), 'type': FieldInfo(annotation=Literal['path_segment_info'], required=False, default='path_segment_info')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37c9810,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36c5d40,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "command": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c1dd28,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x00005584c36c5340,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "command_id": SerField {                                                     key_py: Py(                                                         0x00007fe0bcdf5370,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "relative": SerField {                                                     key_py: Py(                                                         0x00007fe0bfb81330,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Bool(                                                             BoolSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 3,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PathSegmentInfo",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde188f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "path_segment_info",                                             },                                             expected_py: None,                                             name: "literal['path_segment_info']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPathSegmentInfo",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPathSegmentInfo", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5e880,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5ea00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "command",                                                 lookup_key: Simple {                                                     key: "command",                                                     py_key: Py(                                                         0x00007fe0bcc5e910,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "command",                                                                 Py(                                                                     0x00007fe0bcc5e850,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c1dd28,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x00005584c36c5340,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "line_to": 1,                                                                     "nurbs_curve_to": 3,                                                                     "move_to": 0,                                                                     "add_arc": 4,                                                                     "bez_curve_to": 2,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007fe0bccbf2c0,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007fe0bd0ce690,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd0ce6f0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd0ce750,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd0ce7b0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd0ce810,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'move_to', 'line_to', 'bez_curve_to', 'nurbs_curve_to' or 'add_arc'",                                                         strict: false,                                                         class_repr: "PathCommand",                                                         name: "str-enum[PathCommand]",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "command_id",                                                 lookup_key: Simple {                                                     key: "command_id",                                                     py_key: Py(                                                         0x00007fe0bccbf370,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "command_id",                                                                 Py(                                                                     0x00007fe0bccbf330,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bcdf5370,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: FunctionAfter(                                                                     FunctionAfterValidator {                                                                         validator: Str(                                                                             StrValidator {                                                                                 strict: false,                                                                                 coerce_numbers_to_str: false,                                                                             },                                                                         ),                                                                         func: Py(                                                                             0x00005584c31a6ad0,                                                                         ),                                                                         config: Py(                                                                             0x00007fe0bccbf080,                                                                         ),                                                                         name: "function-after[ModelingCmdId(), str]",                                                                         field_name: None,                                                                         info_arg: false,                                                                     },                                                                 ),                                                                 name: "nullable[function-after[ModelingCmdId(), str]]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[function-after[ModelingCmdId(), str]]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "relative",                                                 lookup_key: Simple {                                                     key: "relative",                                                     py_key: Py(                                                         0x00007fe0bccbf3b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "relative",                                                                 Py(                                                                     0x00007fe0bccbf3f0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bfb81330,                                                 ),                                                 validator: Bool(                                                     BoolValidator {                                                         strict: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PathSegmentInfo",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36c5d40,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "PathSegmentInfo",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5ec70,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5ea30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde188f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "path_segment_info": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccbf440,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde188f0,                                                 ),                                             ],                                         },                                         expected_repr: "'path_segment_info'",                                         name: "literal['path_segment_info']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['path_segment_info']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPathSegmentInfo",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37c9810,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionPathSegmentInfo",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.path_segment_info.PathSegmentInfo, type: Literal['path_segment_info'] = 'path_segment_info') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PathSegmentInfo[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PathSegmentInfo, required=True), 'type': FieldInfo(annotation=Literal['path_segment_info'], required=False, default='path_segment_info')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['path_segment_info'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPlaneIntersectAndProject(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.plane_intersect_and_project.PlaneIntersectAndProject'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['plane_intersect_and_project']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPlaneIntersectAndProject'>, 'config': {'title': 'OptionPlaneIntersectAndProject'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPlaneIntersectAndProject'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPlaneIntersectAndProject:94028703930320', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.plane_intersect_and_project.PlaneIntersectAndProject'>, 'config': {'title': 'PlaneIntersectAndProject'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.plane_intersect_and_project.PlaneIntersectAndProject'>>]}, 'ref': 'kittycad.models.plane_intersect_and_project.PlaneIntersectAndProject:94028702974944', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'plane_coordinates': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'cls': <class 'kittycad.models.point2d.Point2d'>, 'config': {'title': 'Point2d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point2d.Point2d'>>]}, 'ref': 'kittycad.models.point2d.Point2d:94028697342448', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}}, 'model_name': 'Point2d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'PlaneIntersectAndProject', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'plane_intersect_and_project', 'schema': {'expected': ['plane_intersect_and_project'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPlaneIntersectAndProject', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PlaneIntersectAndProject, required=True), 'type': FieldInfo(annotation=Literal['plane_intersect_and_project'], required=False, default='plane_intersect_and_project')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37f17d0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde09d40,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "plane_intersect_and_project",                                             },                                             expected_py: None,                                             name: "literal['plane_intersect_and_project']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c37083e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "plane_coordinates": SerField {                                                     key_py: Py(                                                         0x00007fe0bcdcfe30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Model(                                                                             ModelSerializer {                                                                                 class: Py(                                                                                     0x00005584c31a91f0,                                                                                 ),                                                                                 serializer: Fields(                                                                                     GeneralFieldsSerializer {                                                                                         fields: {                                                                                             "y": SerField {                                                                                                 key_py: Py(                                                                                                     0x00007fe0c1c24450,                                                                                                 ),                                                                                                 alias: None,                                                                                                 alias_py: None,                                                                                                 serializer: Some(                                                                                                     Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 ),                                                                                                 required: true,                                                                                             },                                                                                             "x": SerField {                                                                                                 key_py: Py(                                                                                                     0x00007fe0c1c24420,                                                                                                 ),                                                                                                 alias: None,                                                                                                 alias_py: None,                                                                                                 serializer: Some(                                                                                                     Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 ),                                                                                                 required: true,                                                                                             },                                                                                         },                                                                                         computed_fields: Some(                                                                                             ComputedFields(                                                                                                 [],                                                                                             ),                                                                                         ),                                                                                         mode: SimpleDict,                                                                                         extra_serializer: None,                                                                                         filter: SchemaFilter {                                                                                             include: None,                                                                                             exclude: None,                                                                                         },                                                                                         required_fields: 2,                                                                                     },                                                                                 ),                                                                                 has_extra: false,                                                                                 root_model: false,                                                                                 name: "Point2d",                                                                             },                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PlaneIntersectAndProject",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPlaneIntersectAndProject",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPlaneIntersectAndProject", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc459b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1fa50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "plane_coordinates",                                                 lookup_key: Simple {                                                     key: "plane_coordinates",                                                     py_key: Py(                                                         0x00007fe0bd2d3eb0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "plane_coordinates",                                                                 Py(                                                                     0x00007fe0bddb9530,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bcdcfe30,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Model(                                                                     ModelValidator {                                                                         revalidate: Never,                                                                         validator: ModelFields(                                                                             ModelFieldsValidator {                                                                                 fields: [                                                                                     Field {                                                                                         name: "x",                                                                                         lookup_key: Simple {                                                                                             key: "x",                                                                                             py_key: Py(                                                                                                 0x00007fe0c1c24420,                                                                                             ),                                                                                             path: LookupPath(                                                                                                 [                                                                                                     S(                                                                                                         "x",                                                                                                         Py(                                                                                                             0x00007fe0c1c24420,                                                                                                         ),                                                                                                     ),                                                                                                 ],                                                                                             ),                                                                                         },                                                                                         name_py: Py(                                                                                             0x00007fe0c1c24420,                                                                                         ),                                                                                         validator: FunctionAfter(                                                                                             FunctionAfterValidator {                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 func: Py(                                                                                                     0x00005584c3038b40,                                                                                                 ),                                                                                                 config: Py(                                                                                                     0x00007fe0bccc8080,                                                                                                 ),                                                                                                 name: "function-after[LengthUnit(), float]",                                                                                                 field_name: None,                                                                                                 info_arg: false,                                                                                             },                                                                                         ),                                                                                         frozen: false,                                                                                     },                                                                                     Field {                                                                                         name: "y",                                                                                         lookup_key: Simple {                                                                                             key: "y",                                                                                             py_key: Py(                                                                                                 0x00007fe0c1c24450,                                                                                             ),                                                                                             path: LookupPath(                                                                                                 [                                                                                                     S(                                                                                                         "y",                                                                                                         Py(                                                                                                             0x00007fe0c1c24450,                                                                                                         ),                                                                                                     ),                                                                                                 ],                                                                                             ),                                                                                         },                                                                                         name_py: Py(                                                                                             0x00007fe0c1c24450,                                                                                         ),                                                                                         validator: FunctionAfter(                                                                                             FunctionAfterValidator {                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 func: Py(                                                                                                     0x00005584c3038b40,                                                                                                 ),                                                                                                 config: Py(                                                                                                     0x00007fe0bccc8080,                                                                                                 ),                                                                                                 name: "function-after[LengthUnit(), float]",                                                                                                 field_name: None,                                                                                                 info_arg: false,                                                                                             },                                                                                         ),                                                                                         frozen: false,                                                                                     },                                                                                 ],                                                                                 model_name: "Point2d",                                                                                 extra_behavior: Ignore,                                                                                 extras_validator: None,                                                                                 strict: false,                                                                                 from_attributes: false,                                                                                 loc_by_alias: true,                                                                             },                                                                         ),                                                                         class: Py(                                                                             0x00005584c31a91f0,                                                                         ),                                                                         generic_origin: None,                                                                         post_init: None,                                                                         frozen: false,                                                                         custom_init: false,                                                                         root_model: false,                                                                         undefined: Py(                                                                             0x00007fe0bfae63d0,                                                                         ),                                                                         name: "Point2d",                                                                     },                                                                 ),                                                                 name: "nullable[Point2d]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[Point2d]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "PlaneIntersectAndProject",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c37083e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "PlaneIntersectAndProject",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1fbd0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1f810,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde09d40,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "plane_intersect_and_project": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccc9200,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde09d40,                                                 ),                                             ],                                         },                                         expected_repr: "'plane_intersect_and_project'",                                         name: "literal['plane_intersect_and_project']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['plane_intersect_and_project']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPlaneIntersectAndProject",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37f17d0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionPlaneIntersectAndProject",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.plane_intersect_and_project.PlaneIntersectAndProject, type: Literal['plane_intersect_and_project'] = 'plane_intersect_and_project') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PlaneIntersectAndProject[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PlaneIntersectAndProject, required=True), 'type': FieldInfo(annotation=Literal['plane_intersect_and_project'], required=False, default='plane_intersect_and_project')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['plane_intersect_and_project'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionPlaneSetColor(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.plane_set_color.PlaneSetColor'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['plane_set_color']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionPlaneSetColor'>, 'config': {'title': 'OptionPlaneSetColor'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionPlaneSetColor'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionPlaneSetColor:94028702888816', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.plane_set_color.PlaneSetColor'>, 'config': {'title': 'PlaneSetColor'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.plane_set_color.PlaneSetColor'>>]}, 'ref': 'kittycad.models.plane_set_color.PlaneSetColor:94028702780672', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'PlaneSetColor', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'plane_set_color', 'schema': {'expected': ['plane_set_color'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionPlaneSetColor', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PlaneSetColor, required=True), 'type': FieldInfo(annotation=Literal['plane_set_color'], required=False, default='plane_set_color')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36f3370,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde18db0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "plane_set_color",                                             },                                             expected_py: None,                                             name: "literal['plane_set_color']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36d8d00,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "PlaneSetColor",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionPlaneSetColor",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionPlaneSetColor", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1f000,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1f030,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "PlaneSetColor",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36d8d00,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "PlaneSetColor",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1f060,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1f090,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde18db0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "plane_set_color": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc37140,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde18db0,                                                 ),                                             ],                                         },                                         expected_repr: "'plane_set_color'",                                         name: "literal['plane_set_color']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['plane_set_color']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionPlaneSetColor",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36f3370,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionPlaneSetColor",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.plane_set_color.PlaneSetColor, type: Literal['plane_set_color'] = 'plane_set_color') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: PlaneSetColor[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=PlaneSetColor, required=True), 'type': FieldInfo(annotation=Literal['plane_set_color'], required=False, default='plane_set_color')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['plane_set_color'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionReconfigureStream(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.reconfigure_stream.ReconfigureStream'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['reconfigure_stream']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionReconfigureStream'>, 'config': {'title': 'OptionReconfigureStream'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionReconfigureStream'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionReconfigureStream:94028703120656', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.reconfigure_stream.ReconfigureStream'>, 'config': {'title': 'ReconfigureStream'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.reconfigure_stream.ReconfigureStream'>>]}, 'ref': 'kittycad.models.reconfigure_stream.ReconfigureStream:94028702988080', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'ReconfigureStream', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'reconfigure_stream', 'schema': {'expected': ['reconfigure_stream'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionReconfigureStream', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ReconfigureStream, required=True), 'type': FieldInfo(annotation=Literal['reconfigure_stream'], required=False, default='reconfigure_stream')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c372bd10,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c370b730,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ReconfigureStream",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde19070,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "reconfigure_stream",                                             },                                             expected_py: None,                                             name: "literal['reconfigure_stream']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionReconfigureStream",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionReconfigureStream", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5c3f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5c420,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "ReconfigureStream",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c370b730,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "ReconfigureStream",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5c450,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5c480,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde19070,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "reconfigure_stream": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc570c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde19070,                                                 ),                                             ],                                         },                                         expected_repr: "'reconfigure_stream'",                                         name: "literal['reconfigure_stream']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['reconfigure_stream']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionReconfigureStream",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c372bd10,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionReconfigureStream",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.reconfigure_stream.ReconfigureStream, type: Literal['reconfigure_stream'] = 'reconfigure_stream') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ReconfigureStream[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ReconfigureStream, required=True), 'type': FieldInfo(annotation=Literal['reconfigure_stream'], required=False, default='reconfigure_stream')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['reconfigure_stream'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionRemoveSceneObjects(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.remove_scene_objects.RemoveSceneObjects'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['remove_scene_objects']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionRemoveSceneObjects'>, 'config': {'title': 'OptionRemoveSceneObjects'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionRemoveSceneObjects'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionRemoveSceneObjects:94028703111200', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.remove_scene_objects.RemoveSceneObjects'>, 'config': {'title': 'RemoveSceneObjects'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.remove_scene_objects.RemoveSceneObjects'>>]}, 'ref': 'kittycad.models.remove_scene_objects.RemoveSceneObjects:94028702993184', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'RemoveSceneObjects', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'remove_scene_objects', 'schema': {'expected': ['remove_scene_objects'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionRemoveSceneObjects', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=RemoveSceneObjects, required=True), 'type': FieldInfo(annotation=Literal['remove_scene_objects'], required=False, default='remove_scene_objects')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3729820,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c370cb20,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "RemoveSceneObjects",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde19170,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "remove_scene_objects",                                             },                                             expected_py: None,                                             name: "literal['remove_scene_objects']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionRemoveSceneObjects",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionRemoveSceneObjects", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5c030,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5c060,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "RemoveSceneObjects",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c370cb20,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "RemoveSceneObjects",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5c090,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5c0c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde19170,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "remove_scene_objects": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc56240,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde19170,                                                 ),                                             ],                                         },                                         expected_repr: "'remove_scene_objects'",                                         name: "literal['remove_scene_objects']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['remove_scene_objects']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionRemoveSceneObjects",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3729820,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionRemoveSceneObjects",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.remove_scene_objects.RemoveSceneObjects, type: Literal['remove_scene_objects'] = 'remove_scene_objects') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: RemoveSceneObjects[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=RemoveSceneObjects, required=True), 'type': FieldInfo(annotation=Literal['remove_scene_objects'], required=False, default='remove_scene_objects')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['remove_scene_objects'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionRevolve(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.revolve.Revolve'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['revolve']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionRevolve'>, 'config': {'title': 'OptionRevolve'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionRevolve'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionRevolve:94028702334496', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.revolve.Revolve'>, 'config': {'title': 'Revolve'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.revolve.Revolve'>>]}, 'ref': 'kittycad.models.revolve.Revolve:94028702770752', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Revolve', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'revolve', 'schema': {'expected': ['revolve'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionRevolve', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Revolve, required=True), 'type': FieldInfo(annotation=Literal['revolve'], required=False, default='revolve')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c366be20,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36d6640,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Revolve",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be1f1dd0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "revolve",                                             },                                             expected_py: None,                                             name: "literal['revolve']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionRevolve",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionRevolve", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdaf780,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdac930,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Revolve",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36d6640,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Revolve",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdafe70,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdafdb0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be1f1dd0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "revolve": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde4c40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be1f1dd0,                                                 ),                                             ],                                         },                                         expected_repr: "'revolve'",                                         name: "literal['revolve']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['revolve']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionRevolve",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c366be20,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionRevolve",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.revolve.Revolve, type: Literal['revolve'] = 'revolve') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Revolve[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Revolve, required=True), 'type': FieldInfo(annotation=Literal['revolve'], required=False, default='revolve')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['revolve'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionRevolveAboutEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.revolve_about_edge.RevolveAboutEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['revolve_about_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionRevolveAboutEdge'>, 'config': {'title': 'OptionRevolveAboutEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionRevolveAboutEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionRevolveAboutEdge:94028702353024', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.revolve_about_edge.RevolveAboutEdge'>, 'config': {'title': 'RevolveAboutEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.revolve_about_edge.RevolveAboutEdge'>>]}, 'ref': 'kittycad.models.revolve_about_edge.RevolveAboutEdge:94028702775168', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'RevolveAboutEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'revolve_about_edge', 'schema': {'expected': ['revolve_about_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionRevolveAboutEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=RevolveAboutEdge, required=True), 'type': FieldInfo(annotation=Literal['revolve_about_edge'], required=False, default='revolve_about_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3670680,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde19270,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "revolve_about_edge",                                             },                                             expected_py: None,                                             name: "literal['revolve_about_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36d7780,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "RevolveAboutEdge",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionRevolveAboutEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionRevolveAboutEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc44120,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44450,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "RevolveAboutEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36d7780,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "RevolveAboutEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc44420,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc44510,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde19270,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "revolve_about_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde2fc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde19270,                                                 ),                                             ],                                         },                                         expected_repr: "'revolve_about_edge'",                                         name: "literal['revolve_about_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['revolve_about_edge']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionRevolveAboutEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3670680,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionRevolveAboutEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.revolve_about_edge.RevolveAboutEdge, type: Literal['revolve_about_edge'] = 'revolve_about_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: RevolveAboutEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=RevolveAboutEdge, required=True), 'type': FieldInfo(annotation=Literal['revolve_about_edge'], required=False, default='revolve_about_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['revolve_about_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSceneClearAll(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.scene_clear_all.SceneClearAll'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['scene_clear_all']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSceneClearAll'>, 'config': {'title': 'OptionSceneClearAll'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSceneClearAll'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSceneClearAll:94028702437584', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.scene_clear_all.SceneClearAll'>, 'config': {'title': 'SceneClearAll'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.scene_clear_all.SceneClearAll'>>]}, 'ref': 'kittycad.models.scene_clear_all.SceneClearAll:94028702778416', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SceneClearAll', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'scene_clear_all', 'schema': {'expected': ['scene_clear_all'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSceneClearAll', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SceneClearAll, required=True), 'type': FieldInfo(annotation=Literal['scene_clear_all'], required=False, default='scene_clear_all')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36850d0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde19770,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "scene_clear_all",                                             },                                             expected_py: None,                                             name: "literal['scene_clear_all']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36d8430,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SceneClearAll",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSceneClearAll",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSceneClearAll", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45740,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc45770,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SceneClearAll",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36d8430,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SceneClearAll",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc457a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc457d0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde19770,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "scene_clear_all": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdd8b80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde19770,                                                 ),                                             ],                                         },                                         expected_repr: "'scene_clear_all'",                                         name: "literal['scene_clear_all']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['scene_clear_all']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSceneClearAll",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36850d0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSceneClearAll",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.scene_clear_all.SceneClearAll, type: Literal['scene_clear_all'] = 'scene_clear_all') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SceneClearAll[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SceneClearAll, required=True), 'type': FieldInfo(annotation=Literal['scene_clear_all'], required=False, default='scene_clear_all')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['scene_clear_all'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectAdd(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_add.SelectAdd'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_add']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectAdd'>, 'config': {'title': 'OptionSelectAdd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectAdd'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectAdd:94028702419056', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_add.SelectAdd'>, 'config': {'title': 'SelectAdd'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_add.SelectAdd'>>]}, 'ref': 'kittycad.models.select_add.SelectAdd:94028703007376', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SelectAdd', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_add', 'schema': {'expected': ['select_add'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectAdd', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectAdd, required=True), 'type': FieldInfo(annotation=Literal['select_add'], required=False, default='select_add')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3680870,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde19970,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_add",                                             },                                             expected_py: None,                                             name: "literal['select_add']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3710290,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectAdd",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectAdd",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectAdd", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc44d20,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44c00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SelectAdd",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3710290,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SelectAdd",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc44b10,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc44c30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde19970,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_add": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdda900,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde19970,                                                 ),                                             ],                                         },                                         expected_repr: "'select_add'",                                         name: "literal['select_add']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_add']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectAdd",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3680870,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSelectAdd",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_add.SelectAdd, type: Literal['select_add'] = 'select_add') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectAdd[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectAdd, required=True), 'type': FieldInfo(annotation=Literal['select_add'], required=False, default='select_add')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_add'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectClear(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_clear.SelectClear'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_clear']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectClear'>, 'config': {'title': 'OptionSelectClear'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectClear'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectClear:94028703197184', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_clear.SelectClear'>, 'config': {'title': 'SelectClear'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_clear.SelectClear'>>]}, 'ref': 'kittycad.models.select_clear.SelectClear:94028703010624', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SelectClear', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_clear', 'schema': {'expected': ['select_clear'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectClear', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectClear, required=True), 'type': FieldInfo(annotation=Literal['select_clear'], required=False, default='select_clear')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c373e800,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3710f40,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectClear",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde199f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_clear",                                             },                                             expected_py: None,                                             name: "literal['select_clear']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectClear",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectClear", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5cc60,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5cc90,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SelectClear",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3710f40,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SelectClear",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5ccc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5ccf0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde199f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_clear": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc70240,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde199f0,                                                 ),                                             ],                                         },                                         expected_repr: "'select_clear'",                                         name: "literal['select_clear']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_clear']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectClear",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c373e800,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSelectClear",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_clear.SelectClear, type: Literal['select_clear'] = 'select_clear') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectClear[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectClear, required=True), 'type': FieldInfo(annotation=Literal['select_clear'], required=False, default='select_clear')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_clear'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectGet(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_get.SelectGet'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_get']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectGet'>, 'config': {'title': 'OptionSelectGet'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectGet'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectGet:94028703587488', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_get.SelectGet'>, 'config': {'title': 'SelectGet'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_get.SelectGet'>>]}, 'ref': 'kittycad.models.select_get.SelectGet:94028703013872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_ids': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'SelectGet', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_get', 'schema': {'expected': ['select_get'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectGet', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectGet, required=True), 'type': FieldInfo(annotation=Literal['select_get'], required=False, default='select_get')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c379dca0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde19a70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_get",                                             },                                             expected_py: None,                                             name: "literal['select_get']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3711bf0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_ids": SerField {                                                     key_py: Py(                                                         0x00007fe0bd34de30,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectGet",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectGet",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectGet", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5e700,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5e730,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_ids",                                                 lookup_key: Simple {                                                     key: "entity_ids",                                                     py_key: Py(                                                         0x00007fe0bcc7bd30,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_ids",                                                                 Py(                                                                     0x00007fe0bcc7baf0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd34de30,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "SelectGet",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3711bf0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SelectGet",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5e760,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5e790,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde19a70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_get": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc79500,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde19a70,                                                 ),                                             ],                                         },                                         expected_repr: "'select_get'",                                         name: "literal['select_get']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_get']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectGet",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c379dca0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSelectGet",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_get.SelectGet, type: Literal['select_get'] = 'select_get') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectGet[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectGet, required=True), 'type': FieldInfo(annotation=Literal['select_get'], required=False, default='select_get')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_get'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectRemove(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_remove.SelectRemove'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_remove']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectRemove'>, 'config': {'title': 'OptionSelectRemove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectRemove'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectRemove:94028702428800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_remove.SelectRemove'>, 'config': {'title': 'SelectRemove'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_remove.SelectRemove'>>]}, 'ref': 'kittycad.models.select_remove.SelectRemove:94028703000912', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SelectRemove', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_remove', 'schema': {'expected': ['select_remove'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectRemove', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectRemove, required=True), 'type': FieldInfo(annotation=Literal['select_remove'], required=False, default='select_remove')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3682e80,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde19af0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_remove",                                             },                                             expected_py: None,                                             name: "literal['select_remove']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c370e950,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectRemove",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectRemove",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectRemove", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc44540,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44810,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SelectRemove",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c370e950,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SelectRemove",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc44570,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc44630,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde19af0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_remove": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdd9a80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde19af0,                                                 ),                                             ],                                         },                                         expected_repr: "'select_remove'",                                         name: "literal['select_remove']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_remove']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectRemove",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3682e80,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSelectRemove",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_remove.SelectRemove, type: Literal['select_remove'] = 'select_remove') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectRemove[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectRemove, required=True), 'type': FieldInfo(annotation=Literal['select_remove'], required=False, default='select_remove')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_remove'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectReplace(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_replace.SelectReplace'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_replace']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectReplace'>, 'config': {'title': 'OptionSelectReplace'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectReplace'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectReplace:94028702447040', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_replace.SelectReplace'>, 'config': {'title': 'SelectReplace'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_replace.SelectReplace'>>]}, 'ref': 'kittycad.models.select_replace.SelectReplace:94028703004160', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SelectReplace', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_replace', 'schema': {'expected': ['select_replace'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectReplace', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectReplace, required=True), 'type': FieldInfo(annotation=Literal['select_replace'], required=False, default='select_replace')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36875c0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c370f600,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectReplace",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde19b70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_replace",                                             },                                             expected_py: None,                                             name: "literal['select_replace']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectReplace",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectReplace", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45b00,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc45b30,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SelectReplace",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c370f600,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SelectReplace",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc45b60,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc45b90,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde19b70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_replace": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdcbc80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde19b70,                                                 ),                                             ],                                         },                                         expected_repr: "'select_replace'",                                         name: "literal['select_replace']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_replace']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectReplace",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36875c0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSelectReplace",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_replace.SelectReplace, type: Literal['select_replace'] = 'select_replace') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectReplace[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectReplace, required=True), 'type': FieldInfo(annotation=Literal['select_replace'], required=False, default='select_replace')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_replace'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSelectWithPoint(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.select_with_point.SelectWithPoint'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['select_with_point']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectWithPoint'>, 'config': {'title': 'OptionSelectWithPoint'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSelectWithPoint'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSelectWithPoint:94028703225792', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.select_with_point.SelectWithPoint'>, 'config': {'title': 'SelectWithPoint'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.select_with_point.SelectWithPoint'>>]}, 'ref': 'kittycad.models.select_with_point.SelectWithPoint:94028703031456', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'entity_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'SelectWithPoint', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'select_with_point', 'schema': {'expected': ['select_with_point'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSelectWithPoint', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectWithPoint, required=True), 'type': FieldInfo(annotation=Literal['select_with_point'], required=False, default='select_with_point')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37457c0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c37160a0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "entity_id": SerField {                                                     key_py: Py(                                                         0x00007fe0bd34fe70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SelectWithPoint",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde19c30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "select_with_point",                                             },                                             expected_py: None,                                             name: "literal['select_with_point']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSelectWithPoint",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSelectWithPoint", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1ff60,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1f6c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "entity_id",                                                 lookup_key: Simple {                                                     key: "entity_id",                                                     py_key: Py(                                                         0x00007fe0bcc62fb0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "entity_id",                                                                 Py(                                                                     0x00007fe0bcc62c70,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd34fe70,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "SelectWithPoint",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c37160a0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SelectWithPoint",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1ff90,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1fea0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde19c30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "select_with_point": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcf42f80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde19c30,                                                 ),                                             ],                                         },                                         expected_repr: "'select_with_point'",                                         name: "literal['select_with_point']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['select_with_point']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSelectWithPoint",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37457c0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSelectWithPoint",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.select_with_point.SelectWithPoint, type: Literal['select_with_point'] = 'select_with_point') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SelectWithPoint[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SelectWithPoint, required=True), 'type': FieldInfo(annotation=Literal['select_with_point'], required=False, default='select_with_point')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['select_with_point'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSendObject(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.send_object.SendObject'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['send_object']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSendObject'>, 'config': {'title': 'OptionSendObject'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSendObject'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSendObject:94028702851616', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.send_object.SendObject'>, 'config': {'title': 'SendObject'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.send_object.SendObject'>>]}, 'ref': 'kittycad.models.send_object.SendObject:94028703027840', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SendObject', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'send_object', 'schema': {'expected': ['send_object'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSendObject', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SendObject, required=True), 'type': FieldInfo(annotation=Literal['send_object'], required=False, default='send_object')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36ea220,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3715280,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SendObject",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde19d30,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "send_object",                                             },                                             expected_py: None,                                             name: "literal['send_object']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSendObject",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSendObject", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45590,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc455f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SendObject",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3715280,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SendObject",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc45650,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc44960,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde19d30,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "send_object": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcddad40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde19d30,                                                 ),                                             ],                                         },                                         expected_repr: "'send_object'",                                         name: "literal['send_object']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['send_object']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSendObject",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36ea220,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSendObject",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.send_object.SendObject, type: Literal['send_object'] = 'send_object') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SendObject[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SendObject, required=True), 'type': FieldInfo(annotation=Literal['send_object'], required=False, default='send_object')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['send_object'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetBackgroundColor(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_background_color.SetBackgroundColor'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_background_color']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetBackgroundColor'>, 'config': {'title': 'OptionSetBackgroundColor'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetBackgroundColor'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetBackgroundColor:94028702963088', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_background_color.SetBackgroundColor'>, 'config': {'title': 'SetBackgroundColor'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_background_color.SetBackgroundColor'>>]}, 'ref': 'kittycad.models.set_background_color.SetBackgroundColor:94028703036272', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetBackgroundColor', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_background_color', 'schema': {'expected': ['set_background_color'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetBackgroundColor', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetBackgroundColor, required=True), 'type': FieldInfo(annotation=Literal['set_background_color'], required=False, default='set_background_color')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3705590,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1a070,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_background_color",                                             },                                             expected_py: None,                                             name: "literal['set_background_color']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3717370,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetBackgroundColor",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetBackgroundColor",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetBackgroundColor", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1f900,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1f930,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetBackgroundColor",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3717370,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SetBackgroundColor",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1f960,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1f990,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1a070,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_background_color": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc4dc40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1a070,                                                 ),                                             ],                                         },                                         expected_repr: "'set_background_color'",                                         name: "literal['set_background_color']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_background_color']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetBackgroundColor",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3705590,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSetBackgroundColor",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_background_color.SetBackgroundColor, type: Literal['set_background_color'] = 'set_background_color') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetBackgroundColor[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetBackgroundColor, required=True), 'type': FieldInfo(annotation=Literal['set_background_color'], required=False, default='set_background_color')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_background_color'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetCurrentToolProperties(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_current_tool_properties.SetCurrentToolProperties'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_current_tool_properties']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetCurrentToolProperties'>, 'config': {'title': 'OptionSetCurrentToolProperties'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetCurrentToolProperties'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetCurrentToolProperties:94028702754112', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_current_tool_properties.SetCurrentToolProperties'>, 'config': {'title': 'SetCurrentToolProperties'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_current_tool_properties.SetCurrentToolProperties'>>]}, 'ref': 'kittycad.models.set_current_tool_properties.SetCurrentToolProperties:94028703039520', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetCurrentToolProperties', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_current_tool_properties', 'schema': {'expected': ['set_current_tool_properties'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetCurrentToolProperties', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetCurrentToolProperties, required=True), 'type': FieldInfo(annotation=Literal['set_current_tool_properties'], required=False, default='set_current_tool_properties')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36d2540,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3718020,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetCurrentToolProperties",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde09f20,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_current_tool_properties",                                             },                                             expected_py: None,                                             name: "literal['set_current_tool_properties']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetCurrentToolProperties",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetCurrentToolProperties", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1fcc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1fcf0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetCurrentToolProperties",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3718020,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SetCurrentToolProperties",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1fd20,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1fd50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde09f20,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_current_tool_properties": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc4ea40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde09f20,                                                 ),                                             ],                                         },                                         expected_repr: "'set_current_tool_properties'",                                         name: "literal['set_current_tool_properties']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_current_tool_properties']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetCurrentToolProperties",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36d2540,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSetCurrentToolProperties",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_current_tool_properties.SetCurrentToolProperties, type: Literal['set_current_tool_properties'] = 'set_current_tool_properties') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetCurrentToolProperties[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetCurrentToolProperties, required=True), 'type': FieldInfo(annotation=Literal['set_current_tool_properties'], required=False, default='set_current_tool_properties')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_current_tool_properties'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetDefaultSystemProperties(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_default_system_properties.SetDefaultSystemProperties'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_default_system_properties']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetDefaultSystemProperties'>, 'config': {'title': 'OptionSetDefaultSystemProperties'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetDefaultSystemProperties'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetDefaultSystemProperties:94028703062960', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_default_system_properties.SetDefaultSystemProperties'>, 'config': {'title': 'SetDefaultSystemProperties'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_default_system_properties.SetDefaultSystemProperties'>>]}, 'ref': 'kittycad.models.set_default_system_properties.SetDefaultSystemProperties:94028702475600', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetDefaultSystemProperties', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_default_system_properties', 'schema': {'expected': ['set_default_system_properties'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetDefaultSystemProperties', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetDefaultSystemProperties, required=True), 'type': FieldInfo(annotation=Literal['set_default_system_properties'], required=False, default='set_default_system_properties')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c371dbb0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde09fc0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_default_system_properties",                                             },                                             expected_py: None,                                             name: "literal['set_default_system_properties']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c368e550,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetDefaultSystemProperties",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetDefaultSystemProperties",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetDefaultSystemProperties", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc44bd0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44f90,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetDefaultSystemProperties",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c368e550,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SetDefaultSystemProperties",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc44210,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc456e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde09fc0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_default_system_properties": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc37440,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde09fc0,                                                 ),                                             ],                                         },                                         expected_repr: "'set_default_system_properties'",                                         name: "literal['set_default_system_properties']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_default_system_properties']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetDefaultSystemProperties",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c371dbb0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSetDefaultSystemProperties",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_default_system_properties.SetDefaultSystemProperties, type: Literal['set_default_system_properties'] = 'set_default_system_properties') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetDefaultSystemProperties[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetDefaultSystemProperties, required=True), 'type': FieldInfo(annotation=Literal['set_default_system_properties'], required=False, default='set_default_system_properties')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_default_system_properties'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetSceneUnits(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_scene_units.SetSceneUnits'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_scene_units']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSceneUnits'>, 'config': {'title': 'OptionSetSceneUnits'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSceneUnits'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetSceneUnits:94028703130368', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_scene_units.SetSceneUnits'>, 'config': {'title': 'SetSceneUnits'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_scene_units.SetSceneUnits'>>]}, 'ref': 'kittycad.models.set_scene_units.SetSceneUnits:94028702478240', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetSceneUnits', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_scene_units', 'schema': {'expected': ['set_scene_units'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetSceneUnits', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSceneUnits, required=True), 'type': FieldInfo(annotation=Literal['set_scene_units'], required=False, default='set_scene_units')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c372e300,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c368efa0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetSceneUnits",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1a230,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_scene_units",                                             },                                             expected_py: None,                                             name: "literal['set_scene_units']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetSceneUnits",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetSceneUnits", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5c7b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5c7e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetSceneUnits",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c368efa0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SetSceneUnits",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5c810,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5c840,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1a230,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_scene_units": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc57f40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1a230,                                                 ),                                             ],                                         },                                         expected_repr: "'set_scene_units'",                                         name: "literal['set_scene_units']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_scene_units']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetSceneUnits",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c372e300,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSetSceneUnits",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_scene_units.SetSceneUnits, type: Literal['set_scene_units'] = 'set_scene_units') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetSceneUnits[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSceneUnits, required=True), 'type': FieldInfo(annotation=Literal['set_scene_units'], required=False, default='set_scene_units')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_scene_units'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetSelectionFilter(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_selection_filter.SetSelectionFilter'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_selection_filter']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionFilter'>, 'config': {'title': 'OptionSetSelectionFilter'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionFilter'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionFilter:94028703148784', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_selection_filter.SetSelectionFilter'>, 'config': {'title': 'SetSelectionFilter'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_selection_filter.SetSelectionFilter'>>]}, 'ref': 'kittycad.models.set_selection_filter.SetSelectionFilter:94028702481488', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetSelectionFilter', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_selection_filter', 'schema': {'expected': ['set_selection_filter'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetSelectionFilter', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSelectionFilter, required=True), 'type': FieldInfo(annotation=Literal['set_selection_filter'], required=False, default='set_selection_filter')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3732af0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c368fc50,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetSelectionFilter",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1a2f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_selection_filter",                                             },                                             expected_py: None,                                             name: "literal['set_selection_filter']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetSelectionFilter",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetSelectionFilter", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1fdb0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1fed0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetSelectionFilter",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c368fc50,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SetSelectionFilter",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1fe10,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdac660,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1a2f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_selection_filter": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bd3e2400,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1a2f0,                                                 ),                                             ],                                         },                                         expected_repr: "'set_selection_filter'",                                         name: "literal['set_selection_filter']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_selection_filter']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetSelectionFilter",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3732af0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSetSelectionFilter",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_selection_filter.SetSelectionFilter, type: Literal['set_selection_filter'] = 'set_selection_filter') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetSelectionFilter[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSelectionFilter, required=True), 'type': FieldInfo(annotation=Literal['set_selection_filter'], required=False, default='set_selection_filter')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_selection_filter'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetSelectionType(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_selection_type.SetSelectionType'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_selection_type']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionType'>, 'config': {'title': 'OptionSetSelectionType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionType'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetSelectionType:94028703139824', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_selection_type.SetSelectionType'>, 'config': {'title': 'SetSelectionType'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_selection_type.SetSelectionType'>>]}, 'ref': 'kittycad.models.set_selection_type.SetSelectionType:94028703023872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetSelectionType', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_selection_type', 'schema': {'expected': ['set_selection_type'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetSelectionType', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSelectionType, required=True), 'type': FieldInfo(annotation=Literal['set_selection_type'], required=False, default='set_selection_type')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37307f0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1a3f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_selection_type",                                             },                                             expected_py: None,                                             name: "literal['set_selection_type']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3714300,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetSelectionType",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetSelectionType",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetSelectionType", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1ebb0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1ec40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetSelectionType",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3714300,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SetSelectionType",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1ec70,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1ed00,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1a3f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_selection_type": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc4f180,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1a3f0,                                                 ),                                             ],                                         },                                         expected_repr: "'set_selection_type'",                                         name: "literal['set_selection_type']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_selection_type']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetSelectionType",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37307f0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSetSelectionType",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_selection_type.SetSelectionType, type: Literal['set_selection_type'] = 'set_selection_type') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetSelectionType[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetSelectionType, required=True), 'type': FieldInfo(annotation=Literal['set_selection_type'], required=False, default='set_selection_type')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_selection_type'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSetTool(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.set_tool.SetTool'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['set_tool']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSetTool'>, 'config': {'title': 'OptionSetTool'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSetTool'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSetTool:94028702897904', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.set_tool.SetTool'>, 'config': {'title': 'SetTool'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.set_tool.SetTool'>>]}, 'ref': 'kittycad.models.set_tool.SetTool:94028703019808', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SetTool', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'set_tool', 'schema': {'expected': ['set_tool'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSetTool', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetTool, required=True), 'type': FieldInfo(annotation=Literal['set_tool'], required=False, default='set_tool')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36f56f0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1a4b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "set_tool",                                             },                                             expected_py: None,                                             name: "literal['set_tool']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3713320,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SetTool",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSetTool",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSetTool", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1f3c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1f3f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SetTool",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3713320,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SetTool",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1f420,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1f450,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1a4b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "set_tool": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc36380,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1a4b0,                                                 ),                                             ],                                         },                                         expected_repr: "'set_tool'",                                         name: "literal['set_tool']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['set_tool']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSetTool",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36f56f0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSetTool",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.set_tool.SetTool, type: Literal['set_tool'] = 'set_tool') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SetTool[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SetTool, required=True), 'type': FieldInfo(annotation=Literal['set_tool'], required=False, default='set_tool')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['set_tool'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSketchModeDisable(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.sketch_mode_disable.SketchModeDisable'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['sketch_mode_disable']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSketchModeDisable'>, 'config': {'title': 'OptionSketchModeDisable'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSketchModeDisable'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSketchModeDisable:94028702916384', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.sketch_mode_disable.SketchModeDisable'>, 'config': {'title': 'SketchModeDisable'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.sketch_mode_disable.SketchModeDisable'>>]}, 'ref': 'kittycad.models.sketch_mode_disable.SketchModeDisable:94028702502992', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'SketchModeDisable', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'sketch_mode_disable', 'schema': {'expected': ['sketch_mode_disable'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSketchModeDisable', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SketchModeDisable, required=True), 'type': FieldInfo(annotation=Literal['sketch_mode_disable'], required=False, default='sketch_mode_disable')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36f9f20,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3695050,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SketchModeDisable",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1a6b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "sketch_mode_disable",                                             },                                             expected_py: None,                                             name: "literal['sketch_mode_disable']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSketchModeDisable",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSketchModeDisable", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc460a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc46190,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "SketchModeDisable",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3695050,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SketchModeDisable",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc46160,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc46130,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1a6b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "sketch_mode_disable": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcddbc80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1a6b0,                                                 ),                                             ],                                         },                                         expected_repr: "'sketch_mode_disable'",                                         name: "literal['sketch_mode_disable']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['sketch_mode_disable']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSketchModeDisable",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36f9f20,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSketchModeDisable",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.sketch_mode_disable.SketchModeDisable, type: Literal['sketch_mode_disable'] = 'sketch_mode_disable') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SketchModeDisable[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SketchModeDisable, required=True), 'type': FieldInfo(annotation=Literal['sketch_mode_disable'], required=False, default='sketch_mode_disable')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['sketch_mode_disable'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid2DAddHole(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid2d_add_hole.Solid2dAddHole'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid2d_add_hole']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid2DAddHole'>, 'config': {'title': 'OptionSolid2DAddHole'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid2DAddHole'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid2DAddHole:94028702833072', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid2d_add_hole.Solid2dAddHole'>, 'config': {'title': 'Solid2dAddHole'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid2d_add_hole.Solid2dAddHole'>>]}, 'ref': 'kittycad.models.solid2d_add_hole.Solid2dAddHole:94028702507152', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Solid2dAddHole', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid2d_add_hole', 'schema': {'expected': ['solid2d_add_hole'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid2DAddHole', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid2dAddHole, required=True), 'type': FieldInfo(annotation=Literal['solid2d_add_hole'], required=False, default='solid2d_add_hole')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36e59b0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1a7b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid2d_add_hole",                                             },                                             expected_py: None,                                             name: "literal['solid2d_add_hole']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3696090,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid2dAddHole",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid2DAddHole",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid2DAddHole", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1ee80,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1eeb0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Solid2dAddHole",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3696090,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Solid2dAddHole",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1eee0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1ef10,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1a7b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid2d_add_hole": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdc2540,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1a7b0,                                                 ),                                             ],                                         },                                         expected_repr: "'solid2d_add_hole'",                                         name: "literal['solid2d_add_hole']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid2d_add_hole']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid2DAddHole",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36e59b0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSolid2DAddHole",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid2d_add_hole.Solid2dAddHole, type: Literal['solid2d_add_hole'] = 'solid2d_add_hole') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid2dAddHole[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid2dAddHole, required=True), 'type': FieldInfo(annotation=Literal['solid2d_add_hole'], required=False, default='solid2d_add_hole')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid2d_add_hole'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DFilletEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_fillet_edge.Solid3dFilletEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_fillet_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DFilletEdge'>, 'config': {'title': 'OptionSolid3DFilletEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DFilletEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DFilletEdge:94028702842000', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_fillet_edge.Solid3dFilletEdge'>, 'config': {'title': 'Solid3dFilletEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_fillet_edge.Solid3dFilletEdge'>>]}, 'ref': 'kittycad.models.solid3d_fillet_edge.Solid3dFilletEdge:94028700951776', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Solid3dFilletEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_fillet_edge', 'schema': {'expected': ['solid3d_fillet_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DFilletEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dFilletEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_fillet_edge'], required=False, default='solid3d_fillet_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36e7c90,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c351a4e0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dFilletEdge",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1a870,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_fillet_edge",                                             },                                             expected_py: None,                                             name: "literal['solid3d_fillet_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DFilletEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DFilletEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc44fc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc453e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Solid3dFilletEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c351a4e0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Solid3dFilletEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc45290,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc44ff0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1a870,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_fillet_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdd81c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1a870,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_fillet_edge'",                                         name: "literal['solid3d_fillet_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_fillet_edge']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DFilletEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36e7c90,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSolid3DFilletEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_fillet_edge.Solid3dFilletEdge, type: Literal['solid3d_fillet_edge'] = 'solid3d_fillet_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dFilletEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dFilletEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_fillet_edge'], required=False, default='solid3d_fillet_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_fillet_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllEdgeFaces(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_all_edge_faces.Solid3dGetAllEdgeFaces'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_all_edge_faces']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllEdgeFaces'>, 'config': {'title': 'OptionSolid3DGetAllEdgeFaces'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllEdgeFaces'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllEdgeFaces:94028703599632', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_all_edge_faces.Solid3dGetAllEdgeFaces'>, 'config': {'title': 'Solid3dGetAllEdgeFaces'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_all_edge_faces.Solid3dGetAllEdgeFaces'>>]}, 'ref': 'kittycad.models.solid3d_get_all_edge_faces.Solid3dGetAllEdgeFaces:94028702508304', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'faces': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetAllEdgeFaces', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_all_edge_faces', 'schema': {'expected': ['solid3d_get_all_edge_faces'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetAllEdgeFaces', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetAllEdgeFaces, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_all_edge_faces'], required=False, default='solid3d_get_all_edge_faces')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37a0c10,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3696510,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "faces": SerField {                                                     key_py: Py(                                                         0x00007fe0bcdaf090,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetAllEdgeFaces",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde0a060,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_all_edge_faces",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_all_edge_faces']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetAllEdgeFaces",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetAllEdgeFaces", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5eb20,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5eb50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "faces",                                                 lookup_key: Simple {                                                     key: "faces",                                                     py_key: Py(                                                         0x00007fe0bcc5eac0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "faces",                                                                 Py(                                                                     0x00007fe0bcc5eaf0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bcdaf090,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetAllEdgeFaces",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3696510,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Solid3dGetAllEdgeFaces",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5eb80,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5ebb0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde0a060,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_all_edge_faces": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcca1580,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde0a060,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_all_edge_faces'",                                         name: "literal['solid3d_get_all_edge_faces']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_all_edge_faces']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetAllEdgeFaces",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37a0c10,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSolid3DGetAllEdgeFaces",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_all_edge_faces.Solid3dGetAllEdgeFaces, type: Literal['solid3d_get_all_edge_faces'] = 'solid3d_get_all_edge_faces') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetAllEdgeFaces[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetAllEdgeFaces, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_all_edge_faces'], required=False, default='solid3d_get_all_edge_faces')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_all_edge_faces'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllOppositeEdges(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_all_opposite_edges.Solid3dGetAllOppositeEdges'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_all_opposite_edges']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllOppositeEdges'>, 'config': {'title': 'OptionSolid3DGetAllOppositeEdges'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllOppositeEdges'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetAllOppositeEdges:94028703612000', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_all_opposite_edges.Solid3dGetAllOppositeEdges'>, 'config': {'title': 'Solid3dGetAllOppositeEdges'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_all_opposite_edges.Solid3dGetAllOppositeEdges'>>]}, 'ref': 'kittycad.models.solid3d_get_all_opposite_edges.Solid3dGetAllOppositeEdges:94028702510288', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'edges': {'metadata': {}, 'schema': {'items_schema': {'type': 'str'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetAllOppositeEdges', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_all_opposite_edges', 'schema': {'expected': ['solid3d_get_all_opposite_edges'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetAllOppositeEdges', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetAllOppositeEdges, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_all_opposite_edges'], required=False, default='solid3d_get_all_opposite_edges')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37a3c60,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3696cd0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "edges": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c0f560,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Str(                                                                     StrSerializer,                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[str]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetAllOppositeEdges",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde0a0b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_all_opposite_edges",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_all_opposite_edges']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetAllOppositeEdges",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetAllOppositeEdges", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5ef40,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5ef70,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "edges",                                                 lookup_key: Simple {                                                     key: "edges",                                                     py_key: Py(                                                         0x00007fe0bcc5eee0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "edges",                                                                 Py(                                                                     0x00007fe0bcc5ef10,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c0f560,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Str(                                                                 StrValidator {                                                                     strict: false,                                                                     coerce_numbers_to_str: false,                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetAllOppositeEdges",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3696cd0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Solid3dGetAllOppositeEdges",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5efa0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5efd0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde0a0b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_all_opposite_edges": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcca2680,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde0a0b0,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_all_opposite_edges'",                                         name: "literal['solid3d_get_all_opposite_edges']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_all_opposite_edges']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetAllOppositeEdges",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37a3c60,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSolid3DGetAllOppositeEdges",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_all_opposite_edges.Solid3dGetAllOppositeEdges, type: Literal['solid3d_get_all_opposite_edges'] = 'solid3d_get_all_opposite_edges') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetAllOppositeEdges[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetAllOppositeEdges, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_all_opposite_edges'], required=False, default='solid3d_get_all_opposite_edges')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_all_opposite_edges'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetCommonEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_common_edge.Solid3dGetCommonEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_common_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetCommonEdge'>, 'config': {'title': 'OptionSolid3DGetCommonEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetCommonEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetCommonEdge:94028703662704', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_common_edge.Solid3dGetCommonEdge'>, 'config': {'title': 'Solid3dGetCommonEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_common_edge.Solid3dGetCommonEdge'>>]}, 'ref': 'kittycad.models.solid3d_get_common_edge.Solid3dGetCommonEdge:94028696882304', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'edge': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetCommonEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_common_edge', 'schema': {'expected': ['solid3d_get_common_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetCommonEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetCommonEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_common_edge'], required=False, default='solid3d_get_common_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37b0270,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3138c80,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "edge": SerField {                                                     key_py: Py(                                                         0x00007fe0bd480e70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetCommonEdge",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1aab0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_common_edge",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_common_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetCommonEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetCommonEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5f060,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5ee80,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "edge",                                                 lookup_key: Simple {                                                     key: "edge",                                                     py_key: Py(                                                         0x00007fe0bcc5f000,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "edge",                                                                 Py(                                                                     0x00007fe0bcc5f090,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd480e70,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetCommonEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3138c80,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Solid3dGetCommonEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5edc0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5ee50,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1aab0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_common_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcca10c0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1aab0,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_common_edge'",                                         name: "literal['solid3d_get_common_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_common_edge']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetCommonEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37b0270,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSolid3DGetCommonEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_common_edge.Solid3dGetCommonEdge, type: Literal['solid3d_get_common_edge'] = 'solid3d_get_common_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetCommonEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetCommonEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_common_edge'], required=False, default='solid3d_get_common_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_common_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetExtrusionFaceInfo(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_extrusion_face_info.Solid3dGetExtrusionFaceInfo'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_extrusion_face_info']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetExtrusionFaceInfo'>, 'config': {'title': 'OptionSolid3DGetExtrusionFaceInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetExtrusionFaceInfo'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetExtrusionFaceInfo:94028704115696', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_extrusion_face_info.Solid3dGetExtrusionFaceInfo'>, 'config': {'title': 'Solid3dGetExtrusionFaceInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_extrusion_face_info.Solid3dGetExtrusionFaceInfo'>>]}, 'ref': 'kittycad.models.solid3d_get_extrusion_face_info.Solid3dGetExtrusionFaceInfo:94028696888432', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'faces': {'metadata': {}, 'schema': {'items_schema': {'cls': <class 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo'>, 'config': {'title': 'ExtrusionFaceInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo'>>]}, 'ref': 'kittycad.models.extrusion_face_info.ExtrusionFaceInfo:94028696112192', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'cap': {'metadata': {}, 'schema': {'cls': <enum 'ExtrusionFaceCapType'>, 'members': [ExtrusionFaceCapType.NONE, ExtrusionFaceCapType.TOP, ExtrusionFaceCapType.BOTTOM, ExtrusionFaceCapType.BOTH], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.extrusion_face_cap_type.ExtrusionFaceCapType:94028696108464', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'curve_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'face_id': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'ExtrusionFaceInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'list'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetExtrusionFaceInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_extrusion_face_info', 'schema': {'expected': ['solid3d_get_extrusion_face_info'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetExtrusionFaceInfo', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetExtrusionFaceInfo, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_extrusion_face_info'], required=False, default='solid3d_get_extrusion_face_info')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c381ebf0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde0a150,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_extrusion_face_info",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_extrusion_face_info']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c313a470,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "faces": SerField {                                                     key_py: Py(                                                         0x00007fe0bcdaf090,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         List(                                                             ListSerializer {                                                                 item_serializer: Model(                                                                     ModelSerializer {                                                                         class: Py(                                                                             0x00005584c307cc40,                                                                         ),                                                                         serializer: Fields(                                                                             GeneralFieldsSerializer {                                                                                 fields: {                                                                                     "curve_id": SerField {                                                                                         key_py: Py(                                                                                             0x00007fe0bd1625f0,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             WithDefault(                                                                                                 WithDefaultSerializer {                                                                                                     default: Default(                                                                                                         Py(                                                                                                             0x00007fe0c1b2d100,                                                                                                         ),                                                                                                     ),                                                                                                     serializer: Nullable(                                                                                                         NullableSerializer {                                                                                                             serializer: Str(                                                                                                                 StrSerializer,                                                                                                             ),                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "face_id": SerField {                                                                                         key_py: Py(                                                                                             0x00007fe0bdd3ac40,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             WithDefault(                                                                                                 WithDefaultSerializer {                                                                                                     default: Default(                                                                                                         Py(                                                                                                             0x00007fe0c1b2d100,                                                                                                         ),                                                                                                     ),                                                                                                     serializer: Nullable(                                                                                                         NullableSerializer {                                                                                                             serializer: Str(                                                                                                                 StrSerializer,                                                                                                             ),                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                     "cap": SerField {                                                                                         key_py: Py(                                                                                             0x00007fe0bf9aefd0,                                                                                         ),                                                                                         alias: None,                                                                                         alias_py: None,                                                                                         serializer: Some(                                                                                             Enum(                                                                                                 EnumSerializer {                                                                                                     class: Py(                                                                                                         0x00005584c307bdb0,                                                                                                     ),                                                                                                     serializer: Some(                                                                                                         Str(                                                                                                             StrSerializer,                                                                                                         ),                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         ),                                                                                         required: true,                                                                                     },                                                                                 },                                                                                 computed_fields: Some(                                                                                     ComputedFields(                                                                                         [],                                                                                     ),                                                                                 ),                                                                                 mode: SimpleDict,                                                                                 extra_serializer: None,                                                                                 filter: SchemaFilter {                                                                                     include: None,                                                                                     exclude: None,                                                                                 },                                                                                 required_fields: 3,                                                                             },                                                                         ),                                                                         has_extra: false,                                                                         root_model: false,                                                                         name: "ExtrusionFaceInfo",                                                                     },                                                                 ),                                                                 filter: SchemaFilter {                                                                     include: None,                                                                     exclude: None,                                                                 },                                                                 name: "list[ExtrusionFaceInfo]",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetExtrusionFaceInfo",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetExtrusionFaceInfo",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetExtrusionFaceInfo", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5e5b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5fea0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "faces",                                                 lookup_key: Simple {                                                     key: "faces",                                                     py_key: Py(                                                         0x00007fe0bcc5d0e0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "faces",                                                                 Py(                                                                     0x00007fe0bcc5e940,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bcdaf090,                                                 ),                                                 validator: List(                                                     ListValidator {                                                         strict: false,                                                         item_validator: Some(                                                             Model(                                                                 ModelValidator {                                                                     revalidate: Never,                                                                     validator: ModelFields(                                                                         ModelFieldsValidator {                                                                             fields: [                                                                                 Field {                                                                                     name: "cap",                                                                                     lookup_key: Simple {                                                                                         key: "cap",                                                                                         py_key: Py(                                                                                             0x00007fe0bcc5e610,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "cap",                                                                                                     Py(                                                                                                         0x00007fe0bcc5e6a0,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007fe0bf9aefd0,                                                                                     ),                                                                                     validator: StrEnum(                                                                                         EnumValidator {                                                                                             phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                                                             class: Py(                                                                                                 0x00005584c307bdb0,                                                                                             ),                                                                                             lookup: LiteralLookup {                                                                                                 expected_bool: None,                                                                                                 expected_int: None,                                                                                                 expected_str: Some(                                                                                                     {                                                                                                         "top": 1,                                                                                                         "none": 0,                                                                                                         "bottom": 2,                                                                                                         "both": 3,                                                                                                     },                                                                                                 ),                                                                                                 expected_py_dict: None,                                                                                                 expected_py_values: None,                                                                                                 expected_py_primitives: Some(                                                                                                     Py(                                                                                                         0x00007fe0bcceb140,                                                                                                     ),                                                                                                 ),                                                                                                 values: [                                                                                                     Py(                                                                                                         0x00007fe0bd32ccb0,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007fe0bd32cd10,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007fe0bd32cd70,                                                                                                     ),                                                                                                     Py(                                                                                                         0x00007fe0bd32cdd0,                                                                                                     ),                                                                                                 ],                                                                                             },                                                                                             missing: None,                                                                                             expected_repr: "'none', 'top', 'bottom' or 'both'",                                                                                             strict: false,                                                                                             class_repr: "ExtrusionFaceCapType",                                                                                             name: "str-enum[ExtrusionFaceCapType]",                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "curve_id",                                                                                     lookup_key: Simple {                                                                                         key: "curve_id",                                                                                         py_key: Py(                                                                                             0x00007fe0bd218970,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "curve_id",                                                                                                     Py(                                                                                                         0x00007fe0bddb9730,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007fe0bd1625f0,                                                                                     ),                                                                                     validator: WithDefault(                                                                                         WithDefaultValidator {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             on_error: Raise,                                                                                             validator: Nullable(                                                                                                 NullableValidator {                                                                                                     validator: Str(                                                                                                         StrValidator {                                                                                                             strict: false,                                                                                                             coerce_numbers_to_str: false,                                                                                                         },                                                                                                     ),                                                                                                     name: "nullable[str]",                                                                                                 },                                                                                             ),                                                                                             validate_default: false,                                                                                             copy_default: false,                                                                                             name: "default[nullable[str]]",                                                                                             undefined: Py(                                                                                                 0x00007fe0bfae63d0,                                                                                             ),                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                                 Field {                                                                                     name: "face_id",                                                                                     lookup_key: Simple {                                                                                         key: "face_id",                                                                                         py_key: Py(                                                                                             0x00007fe0bcc5ee20,                                                                                         ),                                                                                         path: LookupPath(                                                                                             [                                                                                                 S(                                                                                                     "face_id",                                                                                                     Py(                                                                                                         0x00007fe0bcc5d050,                                                                                                     ),                                                                                                 ),                                                                                             ],                                                                                         ),                                                                                     },                                                                                     name_py: Py(                                                                                         0x00007fe0bdd3ac40,                                                                                     ),                                                                                     validator: WithDefault(                                                                                         WithDefaultValidator {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             on_error: Raise,                                                                                             validator: Nullable(                                                                                                 NullableValidator {                                                                                                     validator: Str(                                                                                                         StrValidator {                                                                                                             strict: false,                                                                                                             coerce_numbers_to_str: false,                                                                                                         },                                                                                                     ),                                                                                                     name: "nullable[str]",                                                                                                 },                                                                                             ),                                                                                             validate_default: false,                                                                                             copy_default: false,                                                                                             name: "default[nullable[str]]",                                                                                             undefined: Py(                                                                                                 0x00007fe0bfae63d0,                                                                                             ),                                                                                         },                                                                                     ),                                                                                     frozen: false,                                                                                 },                                                                             ],                                                                             model_name: "ExtrusionFaceInfo",                                                                             extra_behavior: Ignore,                                                                             extras_validator: None,                                                                             strict: false,                                                                             from_attributes: false,                                                                             loc_by_alias: true,                                                                         },                                                                     ),                                                                     class: Py(                                                                         0x00005584c307cc40,                                                                     ),                                                                     generic_origin: None,                                                                     post_init: None,                                                                     frozen: false,                                                                     custom_init: false,                                                                     root_model: false,                                                                     undefined: Py(                                                                         0x00007fe0bfae63d0,                                                                     ),                                                                     name: "ExtrusionFaceInfo",                                                                 },                                                             ),                                                         ),                                                         min_length: None,                                                         max_length: None,                                                         name: OnceLock(                                                             <uninit>,                                                         ),                                                         fail_fast: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetExtrusionFaceInfo",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c313a470,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Solid3dGetExtrusionFaceInfo",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5d2c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5fdb0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde0a150,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_extrusion_face_info": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcce9c00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde0a150,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_extrusion_face_info'",                                         name: "literal['solid3d_get_extrusion_face_info']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_extrusion_face_info']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetExtrusionFaceInfo",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c381ebf0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSolid3DGetExtrusionFaceInfo",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_extrusion_face_info.Solid3dGetExtrusionFaceInfo, type: Literal['solid3d_get_extrusion_face_info'] = 'solid3d_get_extrusion_face_info') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetExtrusionFaceInfo[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetExtrusionFaceInfo, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_extrusion_face_info'], required=False, default='solid3d_get_extrusion_face_info')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_extrusion_face_info'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetNextAdjacentEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_next_adjacent_edge.Solid3dGetNextAdjacentEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_next_adjacent_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetNextAdjacentEdge'>, 'config': {'title': 'OptionSolid3DGetNextAdjacentEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetNextAdjacentEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetNextAdjacentEdge:94028703636112', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_next_adjacent_edge.Solid3dGetNextAdjacentEdge'>, 'config': {'title': 'Solid3dGetNextAdjacentEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_next_adjacent_edge.Solid3dGetNextAdjacentEdge'>>]}, 'ref': 'kittycad.models.solid3d_get_next_adjacent_edge.Solid3dGetNextAdjacentEdge:94028702561872', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'edge': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetNextAdjacentEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_next_adjacent_edge', 'schema': {'expected': ['solid3d_get_next_adjacent_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetNextAdjacentEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetNextAdjacentEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_next_adjacent_edge'], required=False, default='solid3d_get_next_adjacent_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37a9a90,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde0a1f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_next_adjacent_edge",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_next_adjacent_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36a3650,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "edge": SerField {                                                     key_py: Py(                                                         0x00007fe0bd480e70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetNextAdjacentEdge",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetNextAdjacentEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetNextAdjacentEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5f750,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5f780,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "edge",                                                 lookup_key: Simple {                                                     key: "edge",                                                     py_key: Py(                                                         0x00007fe0bcc5f6f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "edge",                                                                 Py(                                                                     0x00007fe0bcc5f720,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd480e70,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetNextAdjacentEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36a3650,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Solid3dGetNextAdjacentEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5f7b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5f7e0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde0a1f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_next_adjacent_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccb0880,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde0a1f0,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_next_adjacent_edge'",                                         name: "literal['solid3d_get_next_adjacent_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_next_adjacent_edge']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetNextAdjacentEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37a9a90,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSolid3DGetNextAdjacentEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_next_adjacent_edge.Solid3dGetNextAdjacentEdge, type: Literal['solid3d_get_next_adjacent_edge'] = 'solid3d_get_next_adjacent_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetNextAdjacentEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetNextAdjacentEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_next_adjacent_edge'], required=False, default='solid3d_get_next_adjacent_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_next_adjacent_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetOppositeEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_opposite_edge.Solid3dGetOppositeEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_opposite_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetOppositeEdge'>, 'config': {'title': 'OptionSolid3DGetOppositeEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetOppositeEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetOppositeEdge:94028703624464', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_opposite_edge.Solid3dGetOppositeEdge'>, 'config': {'title': 'Solid3dGetOppositeEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_opposite_edge.Solid3dGetOppositeEdge'>>]}, 'ref': 'kittycad.models.solid3d_get_opposite_edge.Solid3dGetOppositeEdge:94028702523136', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'edge': {'metadata': {}, 'schema': {'type': 'str'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetOppositeEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_opposite_edge', 'schema': {'expected': ['solid3d_get_opposite_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetOppositeEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetOppositeEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_opposite_edge'], required=False, default='solid3d_get_opposite_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37a6d10,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c3699f00,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "edge": SerField {                                                     key_py: Py(                                                         0x00007fe0bd480e70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Str(                                                             StrSerializer,                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetOppositeEdge",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde0a290,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_opposite_edge",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_opposite_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetOppositeEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetOppositeEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5f330,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5f360,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "edge",                                                 lookup_key: Simple {                                                     key: "edge",                                                     py_key: Py(                                                         0x00007fe0bcc5f2d0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "edge",                                                                 Py(                                                                     0x00007fe0bcc5f300,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd480e70,                                                 ),                                                 validator: Str(                                                     StrValidator {                                                         strict: false,                                                         coerce_numbers_to_str: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetOppositeEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c3699f00,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Solid3dGetOppositeEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5f390,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5f3c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde0a290,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_opposite_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcca3700,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde0a290,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_opposite_edge'",                                         name: "literal['solid3d_get_opposite_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_opposite_edge']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetOppositeEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37a6d10,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSolid3DGetOppositeEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_opposite_edge.Solid3dGetOppositeEdge, type: Literal['solid3d_get_opposite_edge'] = 'solid3d_get_opposite_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetOppositeEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetOppositeEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_opposite_edge'], required=False, default='solid3d_get_opposite_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_opposite_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetPrevAdjacentEdge(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_get_prev_adjacent_edge.Solid3dGetPrevAdjacentEdge'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_get_prev_adjacent_edge']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetPrevAdjacentEdge'>, 'config': {'title': 'OptionSolid3DGetPrevAdjacentEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetPrevAdjacentEdge'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DGetPrevAdjacentEdge:94028703649440', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_get_prev_adjacent_edge.Solid3dGetPrevAdjacentEdge'>, 'config': {'title': 'Solid3dGetPrevAdjacentEdge'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_get_prev_adjacent_edge.Solid3dGetPrevAdjacentEdge'>>]}, 'ref': 'kittycad.models.solid3d_get_prev_adjacent_edge.Solid3dGetPrevAdjacentEdge:94028702527152', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'edge': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'str'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'Solid3dGetPrevAdjacentEdge', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_get_prev_adjacent_edge', 'schema': {'expected': ['solid3d_get_prev_adjacent_edge'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DGetPrevAdjacentEdge', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetPrevAdjacentEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_prev_adjacent_edge'], required=False, default='solid3d_get_prev_adjacent_edge')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37acea0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c369aeb0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "edge": SerField {                                                     key_py: Py(                                                         0x00007fe0bd480e70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         WithDefault(                                                             WithDefaultSerializer {                                                                 default: Default(                                                                     Py(                                                                         0x00007fe0c1b2d100,                                                                     ),                                                                 ),                                                                 serializer: Nullable(                                                                     NullableSerializer {                                                                         serializer: Str(                                                                             StrSerializer,                                                                         ),                                                                     },                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dGetPrevAdjacentEdge",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde0a2e0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_get_prev_adjacent_edge",                                             },                                             expected_py: None,                                             name: "literal['solid3d_get_prev_adjacent_edge']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DGetPrevAdjacentEdge",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DGetPrevAdjacentEdge", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5f5a0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5f600,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "edge",                                                 lookup_key: Simple {                                                     key: "edge",                                                     py_key: Py(                                                         0x00007fe0bcc5f660,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "edge",                                                                 Py(                                                                     0x00007fe0bcc5f630,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd480e70,                                                 ),                                                 validator: WithDefault(                                                     WithDefaultValidator {                                                         default: Default(                                                             Py(                                                                 0x00007fe0c1b2d100,                                                             ),                                                         ),                                                         on_error: Raise,                                                         validator: Nullable(                                                             NullableValidator {                                                                 validator: Str(                                                                     StrValidator {                                                                         strict: false,                                                                         coerce_numbers_to_str: false,                                                                     },                                                                 ),                                                                 name: "nullable[str]",                                                             },                                                         ),                                                         validate_default: false,                                                         copy_default: false,                                                         name: "default[nullable[str]]",                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Solid3dGetPrevAdjacentEdge",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c369aeb0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Solid3dGetPrevAdjacentEdge",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5f4e0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5f3f0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde0a2e0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_get_prev_adjacent_edge": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc9a600,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde0a2e0,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_get_prev_adjacent_edge'",                                         name: "literal['solid3d_get_prev_adjacent_edge']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_get_prev_adjacent_edge']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DGetPrevAdjacentEdge",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37acea0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSolid3DGetPrevAdjacentEdge",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_get_prev_adjacent_edge.Solid3dGetPrevAdjacentEdge, type: Literal['solid3d_get_prev_adjacent_edge'] = 'solid3d_get_prev_adjacent_edge') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dGetPrevAdjacentEdge[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dGetPrevAdjacentEdge, required=True), 'type': FieldInfo(annotation=Literal['solid3d_get_prev_adjacent_edge'], required=False, default='solid3d_get_prev_adjacent_edge')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_get_prev_adjacent_edge'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSolid3DShellFace(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.solid3d_shell_face.Solid3dShellFace'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['solid3d_shell_face']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DShellFace'>, 'config': {'title': 'OptionSolid3DShellFace'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DShellFace'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSolid3DShellFace:94028702343952', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.solid3d_shell_face.Solid3dShellFace'>, 'config': {'title': 'Solid3dShellFace'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.solid3d_shell_face.Solid3dShellFace'>>]}, 'ref': 'kittycad.models.solid3d_shell_face.Solid3dShellFace:94028702533264', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Solid3dShellFace', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'solid3d_shell_face', 'schema': {'expected': ['solid3d_shell_face'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSolid3DShellFace', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dShellFace, required=True), 'type': FieldInfo(annotation=Literal['solid3d_shell_face'], required=False, default='solid3d_shell_face')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c366e310,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c369c690,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Solid3dShellFace",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1adf0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "solid3d_shell_face",                                             },                                             expected_py: None,                                             name: "literal['solid3d_shell_face']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSolid3DShellFace",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSolid3DShellFace", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc44750,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44870,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Solid3dShellFace",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c369c690,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Solid3dShellFace",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc448d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc448a0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1adf0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "solid3d_shell_face": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde3dc0,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1adf0,                                                 ),                                             ],                                         },                                         expected_repr: "'solid3d_shell_face'",                                         name: "literal['solid3d_shell_face']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['solid3d_shell_face']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSolid3DShellFace",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c366e310,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSolid3DShellFace",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.solid3d_shell_face.Solid3dShellFace, type: Literal['solid3d_shell_face'] = 'solid3d_shell_face') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Solid3dShellFace[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Solid3dShellFace, required=True), 'type': FieldInfo(annotation=Literal['solid3d_shell_face'], required=False, default='solid3d_shell_face')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['solid3d_shell_face'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionStartPath(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.start_path.StartPath'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['start_path']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionStartPath'>, 'config': {'title': 'OptionStartPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionStartPath'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionStartPath:94028702663104', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.start_path.StartPath'>, 'config': {'title': 'StartPath'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.start_path.StartPath'>>]}, 'ref': 'kittycad.models.start_path.StartPath:94028702537296', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'StartPath', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'start_path', 'schema': {'expected': ['start_path'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionStartPath', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=StartPath, required=True), 'type': FieldInfo(annotation=Literal['start_path'], required=False, default='start_path')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36bc1c0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c369d650,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "StartPath",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1b0b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "start_path",                                             },                                             expected_py: None,                                             name: "literal['start_path']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionStartPath",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionStartPath", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc444b0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc44480,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "StartPath",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c369d650,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "StartPath",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc44180,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc441b0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1b0b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "start_path": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde6d80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1b0b0,                                                 ),                                             ],                                         },                                         expected_repr: "'start_path'",                                         name: "literal['start_path']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['start_path']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionStartPath",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36bc1c0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionStartPath",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.start_path.StartPath, type: Literal['start_path'] = 'start_path') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: StartPath[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=StartPath, required=True), 'type': FieldInfo(annotation=Literal['start_path'], required=False, default='start_path')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['start_path'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSurfaceArea(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.surface_area.SurfaceArea'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['surface_area']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSurfaceArea'>, 'config': {'title': 'OptionSurfaceArea'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSurfaceArea'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSurfaceArea:94028704011760', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.surface_area.SurfaceArea'>, 'config': {'title': 'SurfaceArea'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.surface_area.SurfaceArea'>>]}, 'ref': 'kittycad.models.surface_area.SurfaceArea:94028702558736', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'output_unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitArea'>, 'members': [UnitArea.CM2, UnitArea.DM2, UnitArea.FT2, UnitArea.IN2, UnitArea.KM2, UnitArea.M2, UnitArea.MM2, UnitArea.YD2], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_area.UnitArea:94028694375680', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'surface_area': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'SurfaceArea', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'surface_area', 'schema': {'expected': ['surface_area'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSurfaceArea', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SurfaceArea, required=True), 'type': FieldInfo(annotation=Literal['surface_area'], required=False, default='surface_area')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c38055f0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36a2a10,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "output_unit": SerField {                                                     key_py: Py(                                                         0x00007fe0bd597f70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x00005584c2ed4d00,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "surface_area": SerField {                                                     key_py: Py(                                                         0x00007fe0bde1b670,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "SurfaceArea",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1b670,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "surface_area",                                             },                                             expected_py: None,                                             name: "literal['surface_area']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSurfaceArea",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSurfaceArea", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd1a10,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd1a40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "output_unit",                                                 lookup_key: Simple {                                                     key: "output_unit",                                                     py_key: Py(                                                         0x00007fe0bccea830,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "output_unit",                                                                 Py(                                                                     0x00007fe0bccea7f0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd597f70,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x00005584c2ed4d00,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "in2": 3,                                                                     "m2": 5,                                                                     "dm2": 1,                                                                     "km2": 4,                                                                     "mm2": 6,                                                                     "yd2": 7,                                                                     "ft2": 2,                                                                     "cm2": 0,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007fe0bccea780,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007fe0bd4c6030,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c6090,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c60f0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c6150,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c61b0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c6210,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c6270,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c62d0,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'cm2', 'dm2', 'ft2', 'in2', 'km2', 'm2', 'mm2' or 'yd2'",                                                         strict: false,                                                         class_repr: "UnitArea",                                                         name: "str-enum[UnitArea]",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "surface_area",                                                 lookup_key: Simple {                                                     key: "surface_area",                                                     py_key: Py(                                                         0x00007fe0bccea870,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "surface_area",                                                                 Py(                                                                     0x00007fe0bccea8b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bde1b670,                                                 ),                                                 validator: Float(                                                     FloatValidator {                                                         strict: false,                                                         allow_inf_nan: true,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "SurfaceArea",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36a2a10,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "SurfaceArea",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd1a70,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd1aa0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1b670,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "surface_area": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bccea900,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1b670,                                                 ),                                             ],                                         },                                         expected_repr: "'surface_area'",                                         name: "literal['surface_area']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['surface_area']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSurfaceArea",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c38055f0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSurfaceArea",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.surface_area.SurfaceArea, type: Literal['surface_area'] = 'surface_area') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: SurfaceArea[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=SurfaceArea, required=True), 'type': FieldInfo(annotation=Literal['surface_area'], required=False, default='surface_area')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['surface_area'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionSweep(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.sweep.Sweep'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['sweep']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionSweep'>, 'config': {'title': 'OptionSweep'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionSweep'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionSweep:94028702325520', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.sweep.Sweep'>, 'config': {'title': 'Sweep'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.sweep.Sweep'>>]}, 'ref': 'kittycad.models.sweep.Sweep:94028702566432', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'Sweep', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'sweep', 'schema': {'expected': ['sweep'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionSweep', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Sweep, required=True), 'type': FieldInfo(annotation=Literal['sweep'], required=False, default='sweep')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3669b10,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36a4820,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Sweep",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0be1f3f90,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "sweep",                                             },                                             expected_py: None,                                             name: "literal['sweep']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionSweep",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionSweep", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcdad4d0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcdaee20,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "Sweep",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36a4820,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Sweep",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcdaf540,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcdaf210,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0be1f3f90,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "sweep": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcde5b80,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0be1f3f90,                                                 ),                                             ],                                         },                                         expected_repr: "'sweep'",                                         name: "literal['sweep']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['sweep']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionSweep",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3669b10,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionSweep",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.sweep.Sweep, type: Literal['sweep'] = 'sweep') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Sweep[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Sweep, required=True), 'type': FieldInfo(annotation=Literal['sweep'], required=False, default='sweep')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['sweep'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionTakeSnapshot(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.take_snapshot.TakeSnapshot'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['take_snapshot']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionTakeSnapshot'>, 'config': {'title': 'OptionTakeSnapshot'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionTakeSnapshot'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionTakeSnapshot:94028703731632', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.take_snapshot.TakeSnapshot'>, 'config': {'title': 'TakeSnapshot'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.take_snapshot.TakeSnapshot'>>]}, 'ref': 'kittycad.models.take_snapshot.TakeSnapshot:94028702569680', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'contents': {'metadata': {}, 'schema': {'function': {'function': <bound method Base64Data.validate of <class 'kittycad.models.base64data.Base64Data'>>, 'type': 'no-info'}, 'schema': {'choices': [{'type': 'str'}, {'type': 'bytes'}], 'type': 'union'}, 'serialization': {'function': <bound method Base64Data.serialize of <class 'kittycad.models.base64data.Base64Data'>>, 'type': 'function-plain'}, 'type': 'function-after'}, 'type': 'model-field'}}, 'model_name': 'TakeSnapshot', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'take_snapshot', 'schema': {'expected': ['take_snapshot'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionTakeSnapshot', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=TakeSnapshot, required=True), 'type': FieldInfo(annotation=Literal['take_snapshot'], required=False, default='take_snapshot')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37c0fb0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36a54d0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "contents": SerField {                                                     key_py: Py(                                                         0x00007fe0c1bda960,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Function(                                                             FunctionPlainSerializer {                                                                 func: Py(                                                                     0x00007fe0bdeacec0,                                                                 ),                                                                 name: "plain_function[serialize]",                                                                 function_name: "serialize",                                                                 return_serializer: Any(                                                                     AnySerializer,                                                                 ),                                                                 fallback_serializer: None,                                                                 when_used: Always,                                                                 is_field_serializer: false,                                                                 info_arg: false,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "TakeSnapshot",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1b6f0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "take_snapshot",                                             },                                             expected_py: None,                                             name: "literal['take_snapshot']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionTakeSnapshot",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionTakeSnapshot", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bce1fae0,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bce1f720,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "contents",                                                 lookup_key: Simple {                                                     key: "contents",                                                     py_key: Py(                                                         0x00007fe0bdd28b30,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "contents",                                                                 Py(                                                                     0x00007fe0bcf92970,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1bda960,                                                 ),                                                 validator: FunctionAfter(                                                     FunctionAfterValidator {                                                         validator: Union(                                                             UnionValidator {                                                                 mode: Smart,                                                                 choices: [                                                                     (                                                                         Str(                                                                             StrValidator {                                                                                 strict: false,                                                                                 coerce_numbers_to_str: false,                                                                             },                                                                         ),                                                                         None,                                                                     ),                                                                     (                                                                         Bytes(                                                                             BytesValidator {                                                                                 strict: false,                                                                                 bytes_mode: ValBytesMode {                                                                                     ser: Utf8,                                                                                 },                                                                             },                                                                         ),                                                                         None,                                                                     ),                                                                 ],                                                                 custom_error: None,                                                                 strict: false,                                                                 name: "union[str,bytes]",                                                             },                                                         ),                                                         func: Py(                                                             0x00007fe0bd331640,                                                         ),                                                         config: Py(                                                             0x00007fe0bccb0c40,                                                         ),                                                         name: "function-after[validate(), union[str,bytes]]",                                                         field_name: None,                                                         info_arg: false,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "TakeSnapshot",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36a54d0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "TakeSnapshot",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bce1eca0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bce1fc60,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1b6f0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "take_snapshot": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc8f980,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1b6f0,                                                 ),                                             ],                                         },                                         expected_repr: "'take_snapshot'",                                         name: "literal['take_snapshot']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['take_snapshot']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionTakeSnapshot",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37c0fb0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionTakeSnapshot",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.take_snapshot.TakeSnapshot, type: Literal['take_snapshot'] = 'take_snapshot') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: TakeSnapshot[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=TakeSnapshot, required=True), 'type': FieldInfo(annotation=Literal['take_snapshot'], required=False, default='take_snapshot')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['take_snapshot'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionUpdateAnnotation(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.update_annotation.UpdateAnnotation'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['update_annotation']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionUpdateAnnotation'>, 'config': {'title': 'OptionUpdateAnnotation'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionUpdateAnnotation'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionUpdateAnnotation:94028702786176', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.update_annotation.UpdateAnnotation'>, 'config': {'title': 'UpdateAnnotation'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.update_annotation.UpdateAnnotation'>>]}, 'ref': 'kittycad.models.update_annotation.UpdateAnnotation:94028702544800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {}, 'model_name': 'UpdateAnnotation', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'update_annotation', 'schema': {'expected': ['update_annotation'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionUpdateAnnotation', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=UpdateAnnotation, required=True), 'type': FieldInfo(annotation=Literal['update_annotation'], required=False, default='update_annotation')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c36da280,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c369f3a0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {},                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 0,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "UpdateAnnotation",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde1d0b0,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "update_annotation",                                             },                                             expected_py: None,                                             name: "literal['update_annotation']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionUpdateAnnotation",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionUpdateAnnotation", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc45950,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc45830,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [],                                         model_name: "UpdateAnnotation",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c369f3a0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "UpdateAnnotation",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc458c0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc45890,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde1d0b0,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "update_annotation": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcdcaf40,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde1d0b0,                                                 ),                                             ],                                         },                                         expected_repr: "'update_annotation'",                                         name: "literal['update_annotation']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['update_annotation']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionUpdateAnnotation",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c36da280,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionUpdateAnnotation",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.update_annotation.UpdateAnnotation, type: Literal['update_annotation'] = 'update_annotation') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: UpdateAnnotation[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=UpdateAnnotation, required=True), 'type': FieldInfo(annotation=Literal['update_annotation'], required=False, default='update_annotation')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['update_annotation'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionViewIsometric(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.view_isometric.ViewIsometric'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['view_isometric']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionViewIsometric'>, 'config': {'title': 'OptionViewIsometric'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionViewIsometric'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionViewIsometric:94028703517728', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.view_isometric.ViewIsometric'>, 'config': {'title': 'ViewIsometric'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.view_isometric.ViewIsometric'>>]}, 'ref': 'kittycad.models.view_isometric.ViewIsometric:94028702548048', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94028695156576', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94028695166192', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'ViewIsometric', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'view_isometric', 'schema': {'expected': ['view_isometric'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionViewIsometric', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ViewIsometric, required=True), 'type': FieldInfo(annotation=Literal['view_isometric'], required=False, default='view_isometric')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c378cc20,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde3d930,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "view_isometric",                                             },                                             expected_py: None,                                             name: "literal['view_isometric']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36a0050,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007fe0c0a202f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x00005584c2f93760,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b530,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a7f0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a970,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bfbf1470,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1420150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b5b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x00005584c2f95cf0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ViewIsometric",                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionViewIsometric",     }, ), definitions=[Model(ModelSerializer { class: Py(0x5584c218d2f0), serializer: Fields(GeneralFieldsSerializer { fields: {"y": SerField { key_py: Py(0x7fe0c1c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7fe0c1c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7fe0c1c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionViewIsometric", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5e100,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5e130,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007fe0bcc9ba70,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007fe0bcc9bab0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c0a202f0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5df20,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007fe0bcc5df50,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1420150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5df80,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007fe0bcc5dfb0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a7f0,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007fe0bcc9b9b0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007fe0bcc9b970,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b5b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x00005584c2f95cf0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5dfe0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007fe0bcc5e010,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a970,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007fe0bcc9ba30,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007fe0bcc9b9f0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b530,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5e040,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007fe0bcc5e070,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5e0a0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007fe0bcc5e0d0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bfbf1470,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x00005584c2f93760,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ViewIsometric",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36a0050,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "ViewIsometric",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5e160,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5e190,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde3d930,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "view_isometric": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc9bb00,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde3d930,                                                 ),                                             ],                                         },                                         expected_repr: "'view_isometric'",                                         name: "literal['view_isometric']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['view_isometric']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionViewIsometric",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c378cc20,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionViewIsometric",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fe0c1c24420), path: LookupPath([S("x", Py(0x7fe0c1c24420))]) }, name_py: Py(0x7fe0c1c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fe0c1c24450), path: LookupPath([S("y", Py(0x7fe0c1c24450))]) }, name_py: Py(0x7fe0c1c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fe0c1c24480), path: LookupPath([S("z", Py(0x7fe0c1c24480))]) }, name_py: Py(0x7fe0c1c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x5584c218d2f0), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fe0bfae63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.view_isometric.ViewIsometric, type: Literal['view_isometric'] = 'view_isometric') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ViewIsometric[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ViewIsometric, required=True), 'type': FieldInfo(annotation=Literal['view_isometric'], required=False, default='view_isometric')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['view_isometric'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionVolume(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.volume.Volume'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['volume']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionVolume'>, 'config': {'title': 'OptionVolume'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionVolume'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionVolume:94028703985504', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.volume.Volume'>, 'config': {'title': 'Volume'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.volume.Volume'>>]}, 'ref': 'kittycad.models.volume.Volume:94028702599104', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'output_unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitVolume'>, 'members': [UnitVolume.CM3, UnitVolume.FT3, UnitVolume.IN3, UnitVolume.M3, UnitVolume.YD3, UnitVolume.USFLOZ, UnitVolume.USGAL, UnitVolume.L, UnitVolume.ML], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_volume.UnitVolume:94028694385248', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'volume': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Volume', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'volume', 'schema': {'expected': ['volume'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionVolume', 'type': 'model-fields'}, 'type': 'model'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Volume, required=True), 'type': FieldInfo(annotation=Literal['volume'], required=False, default='volume')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c37fef60,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36ac7c0,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "volume": SerField {                                                     key_py: Py(                                                         0x00007fe0c1c22ad8,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Float(                                                             FloatSerializer {                                                                 inf_nan_mode: Null,                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                                 "output_unit": SerField {                                                     key_py: Py(                                                         0x00007fe0bd597f70,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Enum(                                                             EnumSerializer {                                                                 class: Py(                                                                     0x00005584c2ed7260,                                                                 ),                                                                 serializer: Some(                                                                     Str(                                                                         StrSerializer,                                                                     ),                                                                 ),                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 2,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "Volume",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0c1c22ad8,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "volume",                                             },                                             expected_py: None,                                             name: "literal['volume']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionVolume",     }, ), definitions=[])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionVolume", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bccd1290,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bccd12c0,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "output_unit",                                                 lookup_key: Simple {                                                     key: "output_unit",                                                     py_key: Py(                                                         0x00007fe0bcce83f0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "output_unit",                                                                 Py(                                                                     0x00007fe0bcce83b0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0bd597f70,                                                 ),                                                 validator: StrEnum(                                                     EnumValidator {                                                         phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>,                                                         class: Py(                                                             0x00005584c2ed7260,                                                         ),                                                         lookup: LiteralLookup {                                                             expected_bool: None,                                                             expected_int: None,                                                             expected_str: Some(                                                                 {                                                                     "cm3": 0,                                                                     "usgal": 6,                                                                     "m3": 3,                                                                     "ft3": 1,                                                                     "in3": 2,                                                                     "usfloz": 5,                                                                     "yd3": 4,                                                                     "l": 7,                                                                     "ml": 8,                                                                 },                                                             ),                                                             expected_py_dict: None,                                                             expected_py_values: None,                                                             expected_py_primitives: Some(                                                                 Py(                                                                     0x00007fe0bcce8340,                                                                 ),                                                             ),                                                             values: [                                                                 Py(                                                                     0x00007fe0bd4c6630,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c6690,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c66f0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c6750,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c67b0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c6810,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c6870,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c68d0,                                                                 ),                                                                 Py(                                                                     0x00007fe0bd4c6930,                                                                 ),                                                             ],                                                         },                                                         missing: None,                                                         expected_repr: "'cm3', 'ft3', 'in3', 'm3', 'yd3', 'usfloz', 'usgal', 'l' or 'ml'",                                                         strict: false,                                                         class_repr: "UnitVolume",                                                         name: "str-enum[UnitVolume]",                                                     },                                                 ),                                                 frozen: false,                                             },                                             Field {                                                 name: "volume",                                                 lookup_key: Simple {                                                     key: "volume",                                                     py_key: Py(                                                         0x00007fe0bccd1230,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "volume",                                                                 Py(                                                                     0x00007fe0bccd1260,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c1c22ad8,                                                 ),                                                 validator: Float(                                                     FloatValidator {                                                         strict: false,                                                         allow_inf_nan: true,                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "Volume",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36ac7c0,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "Volume",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bccd12f0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bccd1320,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0c1c22ad8,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "volume": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcce8440,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0c1c22ad8,                                                 ),                                             ],                                         },                                         expected_repr: "'volume'",                                         name: "literal['volume']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['volume']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionVolume",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c37fef60,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionVolume",     }, ), definitions=[], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.volume.Volume, type: Literal['volume'] = 'volume') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: Volume[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=Volume, required=True), 'type': FieldInfo(annotation=Literal['volume'], required=False, default='volume')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['volume'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self

class kittycad.models.ok_modeling_cmd_response.OptionZoomToFit(**data)[source][source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__abstractmethods__ = frozenset({})[source]
__annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'data': <class 'kittycad.models.zoom_to_fit.ZoomToFit'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'type': typing.Literal['zoom_to_fit']}[source]
classmethod __class_getitem__(typevar_values)[source]
Return type:

type[BaseModel] | PydanticRecursiveRef

__class_vars__: ClassVar[set[str]] = {}[source]

The names of the class variables defined on the model.

__copy__()[source]

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)[source]

Returns a deep copy of the model.

Return type:

Self

__delattr__(item)[source]

Implement delattr(self, name).

Return type:

Any

__dict__[source]
__eq__(other)[source]

Return self==value.

Return type:

bool

property __fields_set__: set[str][source]
classmethod __get_pydantic_core_schema__(source, handler, /)[source]

Hook into generating the model’s CoreSchema.

Parameters:
  • source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.

  • handler (GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.

Return type:

Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]

Returns:

A pydantic-core CoreSchema.

classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (Union[InvalidSchema, AnySchema, NoneSchema, BoolSchema, IntSchema, FloatSchema, DecimalSchema, StringSchema, BytesSchema, DateSchema, TimeSchema, DatetimeSchema, TimedeltaSchema, LiteralSchema, EnumSchema, IsInstanceSchema, IsSubclassSchema, CallableSchema, ListSchema, TupleSchema, SetSchema, FrozenSetSchema, GeneratorSchema, DictSchema, AfterValidatorFunctionSchema, BeforeValidatorFunctionSchema, WrapValidatorFunctionSchema, PlainValidatorFunctionSchema, WithDefaultSchema, NullableSchema, UnionSchema, TaggedUnionSchema, ChainSchema, LaxOrStrictSchema, JsonOrPythonSchema, TypedDictSchema, ModelFieldsSchema, ModelSchema, DataclassArgsSchema, DataclassSchema, ArgumentsSchema, CallSchema, CustomErrorSchema, JsonSchema, UrlSchema, MultiHostUrlSchema, DefinitionsSchema, DefinitionReferenceSchema, UuidSchema, ComplexSchema]) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Return type:

Dict[str, Any]

Returns:

A JSON schema, as a Python object.

__getattr__(item)[source]
Return type:

Any

__getstate__()[source]

Helper for pickle.

Return type:

dict[Any, Any]

__hash__ = None[source]
__init__(**data)[source]

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__iter__()[source]

So dict(model) works.

Return type:

Generator[Tuple[str, Any], None, None]

__module__ = 'kittycad.models.ok_modeling_cmd_response'[source]
__pretty__(fmt, **kwargs)[source]

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Return type:

Generator[Any, None, None]

__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]

Metadata about the private attributes of the model.

__pydantic_complete__: ClassVar[bool] = True[source]

Whether model building is completed, or if there are still undefined fields.

__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]

A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94028680450800', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.ok_modeling_cmd_response.OptionZoomToFit'>, 'config': {'title': 'OptionZoomToFit'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.ok_modeling_cmd_response.OptionZoomToFit'>>]}, 'ref': 'kittycad.models.ok_modeling_cmd_response.OptionZoomToFit:94028703480480', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'data': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.zoom_to_fit.ZoomToFit'>, 'config': {'title': 'ZoomToFit'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.zoom_to_fit.ZoomToFit'>>]}, 'ref': 'kittycad.models.zoom_to_fit.ZoomToFit:94028702607152', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'settings': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.camera_settings.CameraSettings'>, 'config': {'title': 'CameraSettings'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.camera_settings.CameraSettings'>>]}, 'ref': 'kittycad.models.camera_settings.CameraSettings:94028695156576', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'fov_y': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'orientation': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point4d.Point4d'>, 'config': {'title': 'Point4d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point4d.Point4d'>>]}, 'ref': 'kittycad.models.point4d.Point4d:94028695166192', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'w': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point4d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'ortho': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'ortho_scale': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'type': 'float'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'pos': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}, 'up': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94028680450800', 'type': 'definition-ref'}, 'type': 'model-field'}}, 'model_name': 'CameraSettings', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}}, 'model_name': 'ZoomToFit', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'zoom_to_fit', 'schema': {'expected': ['zoom_to_fit'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionZoomToFit', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]

The core schema of the model.

__pydantic_custom_init__: ClassVar[bool] = False[source]

Whether the model has a custom __init__ method.

__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]

Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_extra__: dict[str, Any] | None[source]

A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.

__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ZoomToFit, required=True), 'type': FieldInfo(annotation=Literal['zoom_to_fit'], required=False, default='zoom_to_fit')}[source]

A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. This replaces Model.__fields__ from Pydantic V1.

__pydantic_fields_set__: set[str][source]

The names of fields explicitly set during instantiation.

__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]

Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

classmethod __pydantic_init_subclass__(**kwargs)[source]

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]

Parent namespace of the model, used for automatic rebuilding of models.

__pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]

The name of the post-init method for the model, if defined.

__pydantic_private__: dict[str, Any] | None[source]

Values of private attributes set on the model instance.

__pydantic_root_model__: ClassVar[bool] = False[source]

Whether the model is a [RootModel][pydantic.root_model.RootModel].

__pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model(     ModelSerializer {         class: Py(             0x00005584c3783aa0,         ),         serializer: Fields(             GeneralFieldsSerializer {                 fields: {                     "data": SerField {                         key_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             Model(                                 ModelSerializer {                                     class: Py(                                         0x00005584c36ae730,                                     ),                                     serializer: Fields(                                         GeneralFieldsSerializer {                                             fields: {                                                 "settings": SerField {                                                     key_py: Py(                                                         0x00007fe0c0a202f0,                                                     ),                                                     alias: None,                                                     alias_py: None,                                                     serializer: Some(                                                         Model(                                                             ModelSerializer {                                                                 class: Py(                                                                     0x00005584c2f93760,                                                                 ),                                                                 serializer: Fields(                                                                     GeneralFieldsSerializer {                                                                         fields: {                                                                             "pos": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1c210d8,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "up": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bfbf1470,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "fov_y": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a7f0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "orientation": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b5b0,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Model(                                                                                         ModelSerializer {                                                                                             class: Py(                                                                                                 0x00005584c2f95cf0,                                                                                             ),                                                                                             serializer: Fields(                                                                                                 GeneralFieldsSerializer {                                                                                                     fields: {                                                                                                         "z": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24480,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "w": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c243f0,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "y": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24450,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                         "x": SerField {                                                                                                             key_py: Py(                                                                                                                 0x00007fe0c1c24420,                                                                                                             ),                                                                                                             alias: None,                                                                                                             alias_py: None,                                                                                                             serializer: Some(                                                                                                                 Float(                                                                                                                     FloatSerializer {                                                                                                                         inf_nan_mode: Null,                                                                                                                     },                                                                                                                 ),                                                                                                             ),                                                                                                             required: true,                                                                                                         },                                                                                                     },                                                                                                     computed_fields: Some(                                                                                                         ComputedFields(                                                                                                             [],                                                                                                         ),                                                                                                     ),                                                                                                     mode: SimpleDict,                                                                                                     extra_serializer: None,                                                                                                     filter: SchemaFilter {                                                                                                         include: None,                                                                                                         exclude: None,                                                                                                     },                                                                                                     required_fields: 4,                                                                                                 },                                                                                             ),                                                                                             has_extra: false,                                                                                             root_model: false,                                                                                             name: "Point4d",                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho_scale": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bd26b530,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     WithDefault(                                                                                         WithDefaultSerializer {                                                                                             default: Default(                                                                                                 Py(                                                                                                     0x00007fe0c1b2d100,                                                                                                 ),                                                                                             ),                                                                                             serializer: Nullable(                                                                                                 NullableSerializer {                                                                                                     serializer: Float(                                                                                                         FloatSerializer {                                                                                                             inf_nan_mode: Null,                                                                                                         },                                                                                                     ),                                                                                                 },                                                                                             ),                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "center": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0c1420150,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Recursive(                                                                                         DefinitionRefSerializer {                                                                                             definition: "...",                                                                                             retry_with_lax_check: true,                                                                                         },                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                             "ortho": SerField {                                                                                 key_py: Py(                                                                                     0x00007fe0bdd3a970,                                                                                 ),                                                                                 alias: None,                                                                                 alias_py: None,                                                                                 serializer: Some(                                                                                     Bool(                                                                                         BoolSerializer,                                                                                     ),                                                                                 ),                                                                                 required: true,                                                                             },                                                                         },                                                                         computed_fields: Some(                                                                             ComputedFields(                                                                                 [],                                                                             ),                                                                         ),                                                                         mode: SimpleDict,                                                                         extra_serializer: None,                                                                         filter: SchemaFilter {                                                                             include: None,                                                                             exclude: None,                                                                         },                                                                         required_fields: 7,                                                                     },                                                                 ),                                                                 has_extra: false,                                                                 root_model: false,                                                                 name: "CameraSettings",                                                             },                                                         ),                                                     ),                                                     required: true,                                                 },                                             },                                             computed_fields: Some(                                                 ComputedFields(                                                     [],                                                 ),                                             ),                                             mode: SimpleDict,                                             extra_serializer: None,                                             filter: SchemaFilter {                                                 include: None,                                                 exclude: None,                                             },                                             required_fields: 1,                                         },                                     ),                                     has_extra: false,                                     root_model: false,                                     name: "ZoomToFit",                                 },                             ),                         ),                         required: true,                     },                     "type": SerField {                         key_py: Py(                             0x00007fe0c1c22880,                         ),                         alias: None,                         alias_py: None,                         serializer: Some(                             WithDefault(                                 WithDefaultSerializer {                                     default: Default(                                         Py(                                             0x00007fe0bde3dd70,                                         ),                                     ),                                     serializer: Literal(                                         LiteralSerializer {                                             expected_int: {},                                             expected_str: {                                                 "zoom_to_fit",                                             },                                             expected_py: None,                                             name: "literal['zoom_to_fit']",                                         },                                     ),                                 },                             ),                         ),                         required: true,                     },                 },                 computed_fields: Some(                     ComputedFields(                         [],                     ),                 ),                 mode: SimpleDict,                 extra_serializer: None,                 filter: SchemaFilter {                     include: None,                     exclude: None,                 },                 required_fields: 2,             },         ),         has_extra: false,         root_model: false,         name: "OptionZoomToFit",     }, ), definitions=[Model(ModelSerializer { class: Py(0x5584c218d2f0), serializer: Fields(GeneralFieldsSerializer { fields: {"z": SerField { key_py: Py(0x7fe0c1c24480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7fe0c1c24420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7fe0c1c24450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]

The pydantic-core SchemaSerializer used to dump instances of the model.

__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionZoomToFit", validator=Model(     ModelValidator {         revalidate: Never,         validator: ModelFields(             ModelFieldsValidator {                 fields: [                     Field {                         name: "data",                         lookup_key: Simple {                             key: "data",                             py_key: Py(                                 0x00007fe0bcc5cd20,                             ),                             path: LookupPath(                                 [                                     S(                                         "data",                                         Py(                                             0x00007fe0bcc5ce40,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c1dfb8,                         ),                         validator: Model(                             ModelValidator {                                 revalidate: Never,                                 validator: ModelFields(                                     ModelFieldsValidator {                                         fields: [                                             Field {                                                 name: "settings",                                                 lookup_key: Simple {                                                     key: "settings",                                                     py_key: Py(                                                         0x00007fe0bcc990b0,                                                     ),                                                     path: LookupPath(                                                         [                                                             S(                                                                 "settings",                                                                 Py(                                                                     0x00007fe0bcc990f0,                                                                 ),                                                             ),                                                         ],                                                     ),                                                 },                                                 name_py: Py(                                                     0x00007fe0c0a202f0,                                                 ),                                                 validator: Model(                                                     ModelValidator {                                                         revalidate: Never,                                                         validator: ModelFields(                                                             ModelFieldsValidator {                                                                 fields: [                                                                     Field {                                                                         name: "center",                                                                         lookup_key: Simple {                                                                             key: "center",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d260,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "center",                                                                                         Py(                                                                                             0x00007fe0bcc5d5f0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1420150,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "fov_y",                                                                         lookup_key: Simple {                                                                             key: "fov_y",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d2f0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "fov_y",                                                                                         Py(                                                                                             0x00007fe0bcc5d650,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a7f0,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "orientation",                                                                         lookup_key: Simple {                                                                             key: "orientation",                                                                             py_key: Py(                                                                                 0x00007fe0bcc98ff0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "orientation",                                                                                         Py(                                                                                             0x00007fe0bcc98fb0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b5b0,                                                                         ),                                                                         validator: Model(                                                                             ModelValidator {                                                                                 revalidate: Never,                                                                                 validator: ModelFields(                                                                                     ModelFieldsValidator {                                                                                         fields: [                                                                                             Field {                                                                                                 name: "w",                                                                                                 lookup_key: Simple {                                                                                                     key: "w",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c243f0,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "w",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c243f0,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c243f0,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "x",                                                                                                 lookup_key: Simple {                                                                                                     key: "x",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24420,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "x",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24420,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24420,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "y",                                                                                                 lookup_key: Simple {                                                                                                     key: "y",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24450,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "y",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24450,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24450,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                             Field {                                                                                                 name: "z",                                                                                                 lookup_key: Simple {                                                                                                     key: "z",                                                                                                     py_key: Py(                                                                                                         0x00007fe0c1c24480,                                                                                                     ),                                                                                                     path: LookupPath(                                                                                                         [                                                                                                             S(                                                                                                                 "z",                                                                                                                 Py(                                                                                                                     0x00007fe0c1c24480,                                                                                                                 ),                                                                                                             ),                                                                                                         ],                                                                                                     ),                                                                                                 },                                                                                                 name_py: Py(                                                                                                     0x00007fe0c1c24480,                                                                                                 ),                                                                                                 validator: Float(                                                                                                     FloatValidator {                                                                                                         strict: false,                                                                                                         allow_inf_nan: true,                                                                                                     },                                                                                                 ),                                                                                                 frozen: false,                                                                                             },                                                                                         ],                                                                                         model_name: "Point4d",                                                                                         extra_behavior: Ignore,                                                                                         extras_validator: None,                                                                                         strict: false,                                                                                         from_attributes: false,                                                                                         loc_by_alias: true,                                                                                     },                                                                                 ),                                                                                 class: Py(                                                                                     0x00005584c2f95cf0,                                                                                 ),                                                                                 generic_origin: None,                                                                                 post_init: None,                                                                                 frozen: false,                                                                                 custom_init: false,                                                                                 root_model: false,                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                                 name: "Point4d",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho",                                                                         lookup_key: Simple {                                                                             key: "ortho",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d560,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho",                                                                                         Py(                                                                                             0x00007fe0bcc5d6b0,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bdd3a970,                                                                         ),                                                                         validator: Bool(                                                                             BoolValidator {                                                                                 strict: false,                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "ortho_scale",                                                                         lookup_key: Simple {                                                                             key: "ortho_scale",                                                                             py_key: Py(                                                                                 0x00007fe0bcc99070,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "ortho_scale",                                                                                         Py(                                                                                             0x00007fe0bcc99030,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bd26b530,                                                                         ),                                                                         validator: WithDefault(                                                                             WithDefaultValidator {                                                                                 default: Default(                                                                                     Py(                                                                                         0x00007fe0c1b2d100,                                                                                     ),                                                                                 ),                                                                                 on_error: Raise,                                                                                 validator: Nullable(                                                                                     NullableValidator {                                                                                         validator: Float(                                                                                             FloatValidator {                                                                                                 strict: false,                                                                                                 allow_inf_nan: true,                                                                                             },                                                                                         ),                                                                                         name: "nullable[float]",                                                                                     },                                                                                 ),                                                                                 validate_default: false,                                                                                 copy_default: false,                                                                                 name: "default[nullable[float]]",                                                                                 undefined: Py(                                                                                     0x00007fe0bfae63d0,                                                                                 ),                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "pos",                                                                         lookup_key: Simple {                                                                             key: "pos",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d5c0,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "pos",                                                                                         Py(                                                                                             0x00007fe0bcc5d680,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0c1c210d8,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                     Field {                                                                         name: "up",                                                                         lookup_key: Simple {                                                                             key: "up",                                                                             py_key: Py(                                                                                 0x00007fe0bcc5d620,                                                                             ),                                                                             path: LookupPath(                                                                                 [                                                                                     S(                                                                                         "up",                                                                                         Py(                                                                                             0x00007fe0bcc5ce10,                                                                                         ),                                                                                     ),                                                                                 ],                                                                             ),                                                                         },                                                                         name_py: Py(                                                                             0x00007fe0bfbf1470,                                                                         ),                                                                         validator: DefinitionRef(                                                                             DefinitionRefValidator {                                                                                 definition: "...",                                                                             },                                                                         ),                                                                         frozen: false,                                                                     },                                                                 ],                                                                 model_name: "CameraSettings",                                                                 extra_behavior: Ignore,                                                                 extras_validator: None,                                                                 strict: false,                                                                 from_attributes: false,                                                                 loc_by_alias: true,                                                             },                                                         ),                                                         class: Py(                                                             0x00005584c2f93760,                                                         ),                                                         generic_origin: None,                                                         post_init: None,                                                         frozen: false,                                                         custom_init: false,                                                         root_model: false,                                                         undefined: Py(                                                             0x00007fe0bfae63d0,                                                         ),                                                         name: "CameraSettings",                                                     },                                                 ),                                                 frozen: false,                                             },                                         ],                                         model_name: "ZoomToFit",                                         extra_behavior: Ignore,                                         extras_validator: None,                                         strict: false,                                         from_attributes: false,                                         loc_by_alias: true,                                     },                                 ),                                 class: Py(                                     0x00005584c36ae730,                                 ),                                 generic_origin: None,                                 post_init: None,                                 frozen: false,                                 custom_init: false,                                 root_model: false,                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                                 name: "ZoomToFit",                             },                         ),                         frozen: false,                     },                     Field {                         name: "type",                         lookup_key: Simple {                             key: "type",                             py_key: Py(                                 0x00007fe0bcc5cea0,                             ),                             path: LookupPath(                                 [                                     S(                                         "type",                                         Py(                                             0x00007fe0bcc5ce70,                                         ),                                     ),                                 ],                             ),                         },                         name_py: Py(                             0x00007fe0c1c22880,                         ),                         validator: WithDefault(                             WithDefaultValidator {                                 default: Default(                                     Py(                                         0x00007fe0bde3dd70,                                     ),                                 ),                                 on_error: Raise,                                 validator: Literal(                                     LiteralValidator {                                         lookup: LiteralLookup {                                             expected_bool: None,                                             expected_int: None,                                             expected_str: Some(                                                 {                                                     "zoom_to_fit": 0,                                                 },                                             ),                                             expected_py_dict: None,                                             expected_py_values: None,                                             expected_py_primitives: Some(                                                 Py(                                                     0x00007fe0bcc99140,                                                 ),                                             ),                                             values: [                                                 Py(                                                     0x00007fe0bde3dd70,                                                 ),                                             ],                                         },                                         expected_repr: "'zoom_to_fit'",                                         name: "literal['zoom_to_fit']",                                     },                                 ),                                 validate_default: false,                                 copy_default: false,                                 name: "default[literal['zoom_to_fit']]",                                 undefined: Py(                                     0x00007fe0bfae63d0,                                 ),                             },                         ),                         frozen: false,                     },                 ],                 model_name: "OptionZoomToFit",                 extra_behavior: Ignore,                 extras_validator: None,                 strict: false,                 from_attributes: false,                 loc_by_alias: true,             },         ),         class: Py(             0x00005584c3783aa0,         ),         generic_origin: None,         post_init: None,         frozen: false,         custom_init: false,         root_model: false,         undefined: Py(             0x00007fe0bfae63d0,         ),         name: "OptionZoomToFit",     }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fe0c1c24420), path: LookupPath([S("x", Py(0x7fe0c1c24420))]) }, name_py: Py(0x7fe0c1c24420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fe0c1c24450), path: LookupPath([S("y", Py(0x7fe0c1c24450))]) }, name_py: Py(0x7fe0c1c24450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fe0c1c24480), path: LookupPath([S("z", Py(0x7fe0c1c24480))]) }, name_py: Py(0x7fe0c1c24480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x5584c218d2f0), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fe0bfae63d0), name: "Point3d" })], cache_strings=True)[source]

The pydantic-core SchemaValidator used to validate instances of the model.

__replace__(**changes)[source]
Return type:

Self

__repr__()[source]

Return repr(self).

Return type:

str

__repr_args__()[source]
Return type:

Iterable[tuple[str | None, Any]]

__repr_name__()[source]

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)[source]

Returns the string representation of a recursive object.

Return type:

str

__repr_str__(join_str)[source]
Return type:

str

__rich_repr__()[source]

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

Iterable[Any | tuple[Any] | tuple[str, Any] | tuple[str, Any, Any]]

__setattr__(name, value)[source]

Implement setattr(self, name, value).

Return type:

None

__setstate__(state)[source]
Return type:

None

__signature__: ClassVar[Signature] = <Signature (*, data: kittycad.models.zoom_to_fit.ZoomToFit, type: Literal['zoom_to_fit'] = 'zoom_to_fit') -> None>[source]

The synthesized __init__ [Signature][inspect.Signature] of the model.

__slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
__str__()[source]

Return str(self).

Return type:

str

_abc_impl = <_abc._abc_data object>[source]
_calculate_keys(*args, **kwargs)[source]
Return type:

Any

_check_frozen(name, value)[source]
Return type:

None

_copy_and_set_values(*args, **kwargs)[source]
Return type:

Any

classmethod _get_value(*args, **kwargs)[source]
Return type:

Any

_iter(*args, **kwargs)[source]
Return type:

Any

classmethod construct(_fields_set=None, **values)[source]
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)[source]

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include – Optional set or mapping specifying which fields to include in the copied model.

  • exclude – Optional set or mapping specifying which fields to exclude in the copied model.

  • update – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

data: ZoomToFit[source]
dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
Return type:

Dict[str, Any]

classmethod from_orm(obj)[source]
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
Return type:

str

model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]
model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)[source]

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Return type:

Self

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

Parameters:
  • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Return type:

Self

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
Return type:

dict[str, Any]

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
Return type:

str

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None[source]

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to "allow".

model_fields: ClassVar[dict[str, FieldInfo]] = {'data': FieldInfo(annotation=ZoomToFit, required=True), 'type': FieldInfo(annotation=Literal['zoom_to_fit'], required=False, default='zoom_to_fit')}[source]
property model_fields_set: set[str][source]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Return type:

dict[str, Any]

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)[source]

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Return type:

str

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context)[source]

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.

Return type:

bool | None

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

Raises:

ValidationError – If the object could not be validated.

Return type:

Self

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)[source]

Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)[source]

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

Return type:

Self

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod parse_obj(obj)[source]
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')[source]
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
Return type:

str

type: Literal['zoom_to_fit'][source]
classmethod update_forward_refs(**localns)[source]
Return type:

None

classmethod validate(value)[source]
Return type:

Self